• Title/Summary/Keyword: Etching resistance

Search Result 225, Processing Time 0.027 seconds

Study on Thermal Properties and Plasma Resistance of MgO-Al2O3-SiO2 Glass (MgO-Al2O3-SiO2계 유리의 열물성과 내플라즈마성 연구)

  • Yoon, Ji Sob;Choi, Jae Ho;Jung, YoonSung;Min, Kyung Won;Im, Won Bin;Kim, Hyeong-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.61-66
    • /
    • 2021
  • In this study, we studied the alternative of plasma resistant ceramic parts that constitute plasma chambers in the semiconductor dry etching process. MgO-Al2O3-SiO2(MAS) glass was made of 13 types of glass using the Design Of Experiments(DOE) and the effect on thermal properties such as glass transition temperature and crystallization temperature depending on the content of each composition and etching resistance to CF4/O2/Ar plasma gas. MAS glass showed excellent plasma resistance and surface roughness up to 20 times higher than quartz glass. As the content of Al2O3 and MgO increases, the plasma resistance is improved, and it has been confirmed that it has an inverse relationship with SiO2.

The effect of rear side etching for crystalline Si solar cells (후면식각이 결정질 실리콘 태양전지에 미치는 영향에 관한 연구)

  • Shin, Jeong Hyun;Kim, Sun Hee;Lee, Hongjae;Kim, Bum Sung;Lee, Don Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.72.2-72.2
    • /
    • 2010
  • Nowadays, the crystalline Si Solar cell are expected for economical renewable energy source. The cost of the crystalline Si solar cell are decreasing by improvement of its efficiency and decrease of the cost of the raw Si wafers for Solar cells. This Si wafer based crystalline Si solar cell is the verified technology from several decade of its history. Now, I will introduce one method that can be upgrade the efficiency by using simple and economical method. The name of this method is Rear Side Etching(RSE). The purpose of rear side etching is the elimination of n+ layer of rear side and increase of the flatness. The effects of rear side etching are the improvement of Voc and increase of efficiency by reducement series resistance and forming of uniform BSF. The experimental procedure for rear side etching is very simple. After anti-reflection coating on solar cell wafer, Solar cell wafer is etched by the etching chemical that react with only rear side not front side. This special chemical is no harmful to anti-reflection coating layer. It can only etched rear side of solar cell wafer. We can use etching image by optical microscope, minority carrier life time by WCT 120, SiNx thickness and refractive index by ellipsometer, cell efficiency for the RSE effect measurement. The key point of rear side etching is development of etching process condition that react with only rear side. If we can control this factor, we can achieve increase of solar cell efficiency very economically without new device.

  • PDF

Laser Induced Wet Etching of Fused Silica according to Etchant (식각액에 따른 용융실리카의 레이저 습식 식각가공)

  • Lee J. H.;Lee J. K.;Jeon B. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.245-249
    • /
    • 2004
  • Transparent materials such as fused silica are important materials in optical and optoelectronics field because of its outstanding properties, such as transparency in a wide wavelength range, strong damage resistance for laser irradiation, and high thermal and chemical stability. However, these properties make it difficult to micromachine silica in micro-sized quantities. In this study, we fabricated a micro patterns on the surface of fused silica plate using laser induced wet etching. KrF excimer laser was used as a light source. There were no burrs and micro cracks on the etched surface of fused silica and the flatness of the etched surface was fairly good. We investigated the influence of etchant upon the etch rate and quality in laser induced wet etching. Pyrene-acetone, toluene, and pyrene-toluene solution were used as etchant. In the side of etch rate, toluene and pyrene-toluene solution were better than pyrene-acetone solution.

  • PDF

A Study on Plasma Corrosion Resistance and Cleaning Process of Yttrium-based Materials using Atmospheric Plasma Spray Coating (Atmospheric Plasma Spray코팅을 이용한 Yttrium계 소재의 내플라즈마성 및 세정 공정에 관한 연구)

  • Kwon, Hyuksung;Kim, Minjoong;So, Jongho;Shin, Jae-Soo;Chung, Chin-Wook;Maeng, SeonJeong;Yun, Ju-Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.74-79
    • /
    • 2022
  • In this study, the plasma corrosion resistance and the change in the number of contamination particles generated using the plasma etching process and cleaning process of coating parts for semiconductor plasma etching equipment were investigated. As the coating method, atmospheric plasma spray (APS) was used, and the powder materials were Y2O3 and Y3Al5O12 (YAG). There was a clear difference in the densities of the coatings due to the difference in solubility due to the melting point of the powdered material. As a plasma environment, a mixed gas of CF4, O2, and Ar was used, and the etching process was performed at 200 W for 60 min. After the plasma etching process, a fluorinated film was formed on the surface, and it was confirmed that the plasma resistance was lowered and contaminant particles were generated. We performed a surface cleaning process using piranha solution(H2SO4(3):H2O2(1)) to remove the defect-causing surface fluorinated film. APS-Y2O3 and APS-YAG coatings commonly increased the number of defects (pores, cracks) on the coating surface by plasma etching and cleaning processes. As a result, it was confirmed that the generation of contamination particles increased and the breakdown voltage decreased. In particular, in the case of APS-YAG under the same cleaning process conditions, some of the fluorinated film remained and surface defects increased, which accelerated the increase in the number of contamination particles after cleaning. These results suggest that contaminating particles and the breakdown voltage that causes defects in semiconductor devices can be controlled through the optimization of the APS coating process and cleaning process.

Investigating the Effect of Photoinitiator Types and Contents on the Photocuring Behavior of Photocurable Inks and Their Applications for Etching Resist Inks (광개시제 종류 및 함량에 따른 광경화형 잉크의 광경화 특성과 인쇄회로기판용 에칭 레지스트 소재로의 적용성 연구)

  • Bo-Young Kim;Subin Jo;Gwajeong Jeong;Seong Dae Park;Jihoon Kim;Eui-Keun Choi;Myong Jae Yoo;Hyunseung Yang
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.444-449
    • /
    • 2023
  • As electronic devices become smaller and more integrated, the demand for manufacturing thin, flexible printed circuit boards (FPCBs) has increased. Although FPCBs are conventionally manufactured by a photolithography method using dry film resist, this process is complicated, and the mask is specifically designed to obtain the precision of the desired circuit line width. In this regard, manufacturing FPCBs with fine patterns through the direct printing method of photocurable inks has gained growing attention. Since the manufacturing process of FPCBs is based on the direct printing method that includes etching and stripping processes utilizing acid and basic chemicals, controlling the adhesion strength, the etching resistance, and the strippability of photocured inks has drawn a lot of attention for the fabrication of fine patterns through photocurable inks. In this study, acrylic ink with various types and contents of the photoinitiator was prepared, and the curing behavior was analyzed. Also, the adhesion strength, etching resistance, and strippability were analyzed to evaluate the applicability of developed photocurable etching resist inks.

원자층 식각방법을 이용한, Contact Hole 내의 Damage Layer 제거 방법에 대한 연구

  • Kim, Jong-Gyu;Jo, Seong-Il;Lee, Seong-Ho;Kim, Chan-Gyu;Gang, Seung-Hyeon;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.244.2-244.2
    • /
    • 2013
  • Contact Pattern을 Plasma Etching을 통해 Pattering 공정을 진행함에 있어서 Plasma 내에 존재하는 High Energy Ion 들의 Bombardment 에 의해, Contact Bottom 의 Silicon Lattice Atom 들은 Physical 한 Damage를 받아 Electron 의 흐름을 방해하게 되어, Resistance를 증가시키게 된다. 또한 Etchant 로 사용되는 Fluorine 과 Chlorine Atom 들은, Contact Bottom 에 Contamination 으로 작용하게 되어, 후속 Contact 공정을 진행하면서 증착되는 Ti 나 Co Layer 와 Si 이 반응하는 것을 방해하여 Ohmic Contact을 형성하기 위한 Silicide Layer를 형성하지 못하도록 만든다. High Aspect Ratio Contact (HARC) Etching 을 진행하면서 Contact Profile을 Vertical 하게 형성하기 위하여 Bias Power를 증가하여 사용하게 되는데, 이로부터 Contact Bottom에서 발생하는 Etchant 로 인한 Damage 는 더욱 더 증가하게 된다. 이 Damage Layer를 추가적인 Secondary Damage 없이 제거하기 위하여 본 연구에서는 원자층 식각방법(Atomic Layer Etching Technique)을 사용하였다. 실험에 사용된 원자층 식각방법을 이용하여, Damage 가 발생한 Si Layer를 Secondary Damage 없이 효과적으로 Control 하여 제거할 수 있음을 확인하였으며, 30 nm Deep Contact Bottom 에서 Damage 가 제거될 수 있음을 확인하였다. XPS 와 Depth SIMS Data를 이용하여 상기 실험 결과를 확인하였으며, SEM Profile 분석을 통하여, Damage 제거 결과 및 Profile 변화 여부를 확인하였으며, 4 Point Prove 결과를 통하여 결과적으로 Resistance 가 개선되는 결과를 얻을 수 있었다.

  • PDF

A Study on the Ohmic Contacts and Etching Processes for the Fabrication of GaSb-based p-channel HEMT on Si Substrate (Si 기판 GaSb 기반 p-채널 HEMT 제작을 위한 오믹 접촉 및 식각 공정에 관한 연구)

  • Yoon, Dae-Keun;Yun, Jong-Won;Ko, Kwang-Man;Oh, Jae-Eung;Rieh, Jae-Sung
    • Journal of IKEEE
    • /
    • v.13 no.4
    • /
    • pp.23-27
    • /
    • 2009
  • Ohmic contact formation and etching processes for the fabrication of MBE (molecular beam epitaxy) grown GaSb-based p-channel HEMT devices on Si substrate have been studied. Firstly, mesa etching process was established for device isolation, based on both HF-based wet etching and ICP-based dry etching. Ohmic contact process for the source and drain formation was also studied based on Ge/Au/Ni/Au metal stack, which resulted in a contact resistance as low as $0.683\;{\Omega}mm$ with RTA at $320^{\circ}C$ for 60s. Finally, for gate formation of HEMT device, gate recess process was studied based on AZ300 developer and citric acid-based wet etching, in which the latter turned out to have high etching selectivity between GaSb and AlGaSb layers that were used as the cap and the barrier of the device, respectively.

  • PDF

The Electrical Properties of GaN Individual Nanorod Devices by Wet-etching of the Nanorod Surface and Annealing Treatment (표면 습식 식각 및 열처리에 따른 GaN 단일 나노로드 소자의 전기적 특성변화)

  • Ji, Hyun-Jin;Choi, Jae-Wan;Kim, Gyu-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.2
    • /
    • pp.152-155
    • /
    • 2011
  • Even though nano-scale materials were very advantageous for various applications, there are still problems to be solved such as the stabilization of surface state and realization of low contact resistances between a semiconducting nanowire and electrodes in nano-electronics. It is well known that the effects of contacts barrier between nano-channel and metal electrodes were dominant in carrier transportation in individual nano-electronics. In this report, it was investigated the electrical properties of GaN nanorod devices after chemical etching and rapid thermal annealing for making good contacts. After KOH wet-etching of the contact area the devices showed better electrical performance compared with non-treated GaN individual devices but still didn't have linear voltage-current characteristics. The shape of voltage-current properties of GaN devices were improved remarkably after rapid thermal annealing as showing Ohmic behaviors with further bigger conductivities. Even though chemical etching of the nanorod surfaces could cause scattering of carriers, in here it was shown that the most important and dominant factor in carrier transport of nano-electronics was realization of low contact barrier between nano-channel and metal electrodes surely.

Electrical characteristic and surface morphology of IBE-etched Silicon (이온빔 에칭된 실리콘의 전기적 특성 및 표면 morphology)

  • 지희환;최정수;김도우;구경완;왕진석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.279-282
    • /
    • 2001
  • The IBE(ion beam etching)-induced Schottky barrier variation which depends on various etching history related with ion energy, incident angle and etching time has been investigated using voltage-current, capacitance-voltage characteristics of metal-etched silicon contact and morphology of etched surface were studied using AFM(atomic force microscope). For ion beam etched n-type silicons, Schottky barrier is reduced according to ion beam energy. It can be seen that amount of donor-like positive charge created in the damaged layer is proportional to the ion energy. By contrary, for ion beam etched p-type silicons, the Schottky barrier and specific contact resistance are both increased. Not only etching time but also incident angle of ion beam has an effect on barrier height. Taping-mode AFM analysis shows increased roughness RMS(Root-Mean-Square) and depth distribution due to ion bombardment. Annealing in an N$_2$ ambient for 30 min was found to be effective in improving the diode characteristics of the etched samples and minimum annealing temperatures to recover IBE-induced barrier variation were related to ion beam energy.

  • PDF

Change of Surface and Electrical Characteristics of Silicon Wafer by Wet Etching(1) - Surface Morphology Changes as a Function of HF Concentration - (습식 식각에 의한 실리콘 웨이퍼의 표면 및 전기적 특성변화(1) - 불산 농도에 따른 표면형상 변화 -)

  • Kim, Jun-Woo;Kang, Dong-Su;Lee, Hyun-Yong;Lee, Sang-Hyeon;Ko, Seong-Woo;Roh, Jae-Seung
    • Korean Journal of Materials Research
    • /
    • v.23 no.6
    • /
    • pp.316-321
    • /
    • 2013
  • The electrical properties and surface morphology changes of a silicon wafer as a function of the HF concentration as the wafer is etched were studied. The HF concentrations were 28, 30, 32, 34, and 36 wt%. The surface morphology changes of the silicon wafer were measured by an SEM ($80^{\circ}$ tilted at ${\times}200$) and the resistivity was measured by assessing the surface resistance using a four-point probe method. The etching rate increased as the HF concentration increased. The maximum etching rate 27.31 ${\mu}m/min$ was achieved at an HF concentration of 36 wt%. A concave wave formed on the wafer after the wet etching process. The size of the wave was largest and the resistivity reached 7.54 $ohm{\cdot}cm$ at an 30 wt% of HF concentration. At an HF concentration of 30 wt%, therefore, a silicon wafer should have good joining strength with a metal backing as well as good electrical properties.