• Title/Summary/Keyword: Etch Rate

Search Result 601, Processing Time 0.025 seconds

Role of $N_2$ flow rate on etch characteristics and variation of line edge roughness during etching of silicon nitride with extreme ultra-violet resist pattern in dual-frequency $CH_2F_2/N_2$/Ar capacitively coupled plasmas

  • Gwon, Bong-Su;Jeong, Chang-Ryong;Lee, Nae-Eung;Lee, Seong-Gwon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.458-458
    • /
    • 2010
  • The process window for the etch selectivity of silicon nitride ($Si_3N_4$) layers to extreme ultra-violet (EUV) resist and variation of line edge roughness (LER) of EUV resist were investigated durin getching of $Si_3N_4$/EUV resist structure in a dual-frequency superimposed capacitive coupled plasma (DFS-CCP) etcher by varying the process parameters, such as the $CH_2F_2$ and $N_2$ gas flow rate in $CH_2F_2/N_2$/Ar plasma. The $CH_2F_2$ and $N_2$ flow rate was found to play a critical role in determining the process window for infinite etch selectivity of $Si_3N_4$/EUV resist, due to disproportionate changes in the degree of polymerization on $Si_3N_4$ and EUV resist surfaces. The preferential chemical reaction between hydrogen and carbon in the hydrofluorocarbon ($CH_xF_y$) polymer layer and the nitrogen and oxygen on the $Si_3N_4$, presumably leading to the formation of HCN, CO, and $CO_2$ etch by-products, results in a smaller steady-state hydrofluorocarbon thickness on $Si_3N_4$ and, in turn, in continuous $Si_3N_4$ etching due to enhanced $SiF_4$ formation, while the $CH_xF_y$ layer is deposited on the EUV resist surface. Also critical dimension (and line edge roughness) tend to decrease with increasing $N_2$ flow rate due to decreased degree of polymerization.

  • PDF

Plasma Resistance and Etch Mechanism of High Purity SiC under Fluorocarbon Plasma

  • Jang, Mi-Ran;Paek, Yeong-Kyeun;Lee, Sung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.328-332
    • /
    • 2012
  • Etch rates of Si and high purity SiC have been compared for various fluorocarbon plasmas. The relative plasma resistance of SiC, which is defined as the etch rate ratio of Si to SiC, varied between 1.4 and 4.1, showing generally higher plasma resistance of SiC. High resolution X-ray photoelectron analysis revealed that etched SiC has a surface carbon content higher than that of etched Si, resulting in a thicker fluorocarbon polymer layer on the SiC surface. The plasma resistance of SiC was correlated with this thick fluorocarbon polymer layer, which reduced the reaction probability of fluorine-containing species in the plasma with silicon from the SiC substrate. The remnant carbon after the removal of Si as volatile etch products augments the surface carbon, and seems to be the origin of the higher plasma resistance of SiC.

Application of Electrochemical Etch-stop in TMAH/IPA/pyrazine Solution to Pressure Sensors (TMAH/IPA/pyrazine용액에 있어서 전기화학적 식각정지법의 압력센서에의 응용)

  • 박진성;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.423-426
    • /
    • 1998
  • Piezoresistive pressure sensors have fabricated using electrochemical etch-stop technique. Si diaphragm having thickness of n-epi. layer was fabricated and used to detect pressure range from 0 to 1 kg/$\textrm{cm}^2$. Piezoresistors were diffused 3${\times}$10$\^$18/ cm$\^$-3/ and placed at diaphragm edge for maximum pressure detection. The characteristics of electrochemical etch-stop in TMAH/lPA/pyrazine solution were also discussed. I-V curves of n and p-type Si in TMAH/lPA/pyrazine solution were obtained. Etching rate is highest at optimum etching condition, TMAH 25wt.%/IPA 17vo1.%/pyrazine 0.1/100m1, thus the elapsed time of etch-stop was reduced.

  • PDF

Investigation of defects and surface polarity in AlN and GaN using wet chemical etching technique (화학적 습식 에칭을 통한 AlN와 GaN의 결함 및 표면 특성 분석)

  • Hong, Yoon Pyo;Park, Jae Hwa;Park, Cheol Woo;Kim, Hyun Mi;Oh, Dong Keun;Choi, Bong Geun;Lee, Seong Kuk;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.5
    • /
    • pp.196-201
    • /
    • 2014
  • We investigated defects and surface polarity in AlN and GaN by using wet chemical etching. Therefore, the effectiveness and reliability of estimating the single crystals by defect selective etching in NaOH/KOH eutectic alloy have been successfully demonstrated. High-quality AlN and GaN single crystals were etched in molten NaOH/KOH eutectic alloy. The etching characteristics and surface morphologies were carried out by scanning electron microscope (SEM) and atomic force microscope (AFM). The etch rates of AlN and GaN surface were calculated by etching depth as a function of etching time. As a result, two-types of etch pits with different sizes were revealed on AlN and GaN surface, respectively. Etching produced hexagonal pits on the metal-face (Al, Ga) (0001) plane, while hexagonal hillocks formed on the N-face. On etching rate calibration, it was found that N-face had approximately 109 and 15 times higher etch rate than the metal-face of AlN and GaN, respectively. The size of etch pits increased with an increase of the etching time and they tend to merge together with a neighbouring etch pits. Also, the chemical mechanism of each etching process was discussed. It was found that hydroxide ion ($OH^-$) and the dangling bond of nitrogen play an important role in the selective etching of the metal-face and N-face.

A Fabrication and Characteristic Estimation of Polycrystalline Silicon Structural Layer for Micromachining (미세가공용 다결정 실리콘 구조체의 제작 및 특성 평가)

  • Kim, Hyoung-Dong;Pack, Seung-Ho;Lee, Seong-Jun;Kim, Chul-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1442-1444
    • /
    • 1995
  • In this study, we confirmed that the crystallinity and the mechanical properties of polycrystalline Silicon(poly-Si) deposited on the poly-oxide are better than those of poly-Si on the conventional sacrificial layers that is CVD oxide layer or PSG. But the etch rate of poly-oxide is poor than that of the CVD oxide layer or PSG. Therefore, to make the best use of small stress and fast etch rate, we fabricated the double oxide layer; 10%-thick poly-oxide on 90%-thick CVD oxide or PSG. To estimate structure deformation by stress, we fabricated the test structures; cantilever. bridge and ring/beam structure and estimated by SEM. As the results, all structure is expressed the deformed structure by residual stress(tensile stress) and the deformation of the structure layer on the double oxide layer is small compared with that of the structure layer on the CVD oxide layer or PSG. And, the etch rate of the double oxide layer is enhanced compared with that of the poly-oxide.

  • PDF

Etching Characteristics of ZnO Thin Films Using Inductively Coupled Plasma of HBr/Ar/CHF3 Gas Mixtures (HBr/Ar/CHF3 혼합가스를 이용한 ZnO 박막의 유도결합 플라즈마 식각)

  • Kim, Moon-Keun;Ham, Young-Hyun;Kwon, Kwang-Ho;Lee, Hyun-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.12
    • /
    • pp.915-918
    • /
    • 2010
  • In this work, the etching characteristics of ZnO thin films were investigated using an inductively coupled plasma(ICP) of HBr/Ar/$CHF_3$ gas mixtures. The plasma characteristics were analyzed by a quadrupole mass spectrometer (QMS) and double langmuir probe (DLP). The surface reaction of the ZnO thin films was investigated using X-ray photoelectron spectroscopy (XPS). The etch rate of ZnO was measured as a function of the $CHF_3$ mixing ratio in the range of 0-15% in an HBr:Ar=5:2 plasma at a fixed gas pressure (6mTorr), input power (700 W), bias power (200 W) and total gas flow rate(50sccm). The etch rate of the ZnO films decreased with increasing $CHF_3$ fraction due to the etch-blocking polymer layer formation.

Etching characteristics and modeling of BST thin films using inductively coupled plasma (유도결합 플라즈마를 이용한 BST 박막의 식각 특성 및 모델링)

  • Kim, Gwan-Ha;Kim, Kyoung-Tae;Kim, Dong-Pyo;Lee, Cheol-In;Kim, Tae-Hyung;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.29-32
    • /
    • 2004
  • This work was devoted to an investigation of etching mechanisms for $(Ba,Sr)TiO_3$ (BST) thin films in inductively coupled $CF_4/Ar$ plasma. We have found that an increase of the Ar content in $CF_4/Ar$ plasma causes non-monotonic behavior of BST etch rate, which reaches a maximum value of 40 nm/min at 80% Ar. Langmuir probe measurements show a weak sensitivity of both electron temperature and electron density to the change of $CF_5/Ar$ mixing ratio. O-D model for plasma chemistry gave monotonic changes of both volume densities and fluxes for active species responsible for the etching process. The analysis of surface kinetics confirms the possibility of non-monotonic etch rate behavior due to the concurrence of physical and chemical pathways in ion-assisted chemical reaction.

  • PDF

The etching properties of MgO thin films in $Cl_2/Ar$ gas chemistry (유도 결합 플라즈마를 이용한 MgO 박막의 식각특성)

  • Koo, Seong-Mo;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.734-737
    • /
    • 2004
  • The metal-ferroelectric-semiconductor (MFS) structure is widely studied for nondestructive readout (NDRO) memory devices, but conventional MFS structure has a critical problem. It is difficult to obtain ferroelectric films like PZT on Si substrate without interdiffusion of impurities such as Pb, Ti and other elements. In order to solve these problems, the metal-ferroelectric-insulator-semiconductor (MFIS) structure has been proposed with a buffer layer of high dielectric constant such as MgO, $Y_2O_3$, and $CeO_2$. In this study, the etching characteristics (etch rate, selectivity) of MgO thin films were etched using $Cl_2/Ar$ plasma. The maximum etch rate of 85 nm/min for MgO thin films was obtained at $Cl_2$(30%)/Ar(70%) gas mixing ratio. Also, the etch rate was measured by varying the etching parameters such as ICP rf power, dc-bias voltage, and chamber pressure. Plasma diagnostics was performed by Langmuir probe (LP) and optical emission spectroscopy (OES).

  • PDF

Etching Characteristics of GST Thin Films using Inductively Coupled Plasma of Cl2-Ar Gas Mixtures (Cl2-Ar 혼합가스를 이용한 GST 박막의 유도결합 플라즈마 식각)

  • Min, Nam-Ki;Kim, Man-Su;Dmitriy, Shutov;Kim, Sung-Ihl;Kwon, Kwang-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.846-851
    • /
    • 2007
  • In this work, the etching characteristics of $Ge_2Sb_2Te_5(GST)$ thin films were investigated using an inductively coupled plasma (ICP) of $Cl_2/Ar$ gas mixture. To analyze the etching mechanism, an optical emission spectroscopy (OES) and surface analysis using X-ray photoelectron spectroscopy (XPS) were carried out. The etch rate of the GST films decreased with decreasing Ar fraction. At the same time, high selective etch rate over $SiO_2$ films was obtained and the selectivity over photoresist films decreased with increasing the he fraction. From XPS results, we found that Te halides were formed at the etching surface and Te halides limited the etch rate of the GST films.

Scanning System Method for Calculating Ion Flux in Plasma Etching Simulation (플라즈마 식각 시뮬레이션을 위한 스캔 방식의 이온 플럭스 계산 방법)

  • Shin, Sung-Sik;Yu, Dong-Hun;Gwun, Ou-Bong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.124-131
    • /
    • 2013
  • The most important thing in Plasma simulation is the etching process in which etch rate is calculated based on feature profile. Although there are various components to consider in calculating etch rate such as Ion Flux, Neutral, gas, and temperature, Addressing of this paper is limited to Ion Flux. This paper propose a scan method to compute Ion Flux faster for Plasma simulation. Also, this paper experiments and compares generally used Monte Carlo method and the proposed method based on gaussian and cosine distribution. Lastly, this paper proves that the proposed method can calculate accurate Ion Flux more efficiently than Monte Carlo method.