DOI QR코드

DOI QR Code

플라즈마 식각 시뮬레이션을 위한 스캔 방식의 이온 플럭스 계산 방법

Scanning System Method for Calculating Ion Flux in Plasma Etching Simulation

  • 신성식 (전북대학교 전자정보공학부) ;
  • 유동훈 (전북대학교 화학공학부) ;
  • 권오봉 (전북대학교 전자정보공학부)
  • Shin, Sung-Sik (Division of Computer Science and Engineering, Chonbuk National University) ;
  • Yu, Dong-Hun (Chemical Engineering and Technology, Chonbuk National University) ;
  • Gwun, Ou-Bong (Division of Computer Science and Engineering, Chonbuk National University)
  • 투고 : 2013.08.02
  • 발행 : 2013.10.25

초록

플라즈마(Plasma) 공정 시뮬레이션에서 가장 중요한 요소는 식각(Etching) 과정으로 특성 정보 프로파일(Feature Profile)에 의존하는 식각 비율(Etch Rate)을 계산하는 것이다. 식각 비율을 결정 요소는 이온 플럭스(Ion Flux), 뉴트럴 플럭스(Neutral Flux), 가스 종 온도 등 다양하지만 본 논문에서는 이온 플럭스(Ion Flux)에 한정하여 고속으로 이온 플럭스를 계산하기 위한 스캔 방법을 제안했다. 그리고 일반적으로 많이 사용되어지는 몬테카를로(Monte Carlo) 방법과 제안 방법을 가우시안 분포 및 코사인 분포를 이용하여 실험하고 서로 비교 분석하였다. 본 논문에서 제안한 방법이 몬테카를로 방법과 비교 했을 때 보다 효율적으로 정확한 이온 플럭스를 계산 할 수 있음을 검증하였다.

The most important thing in Plasma simulation is the etching process in which etch rate is calculated based on feature profile. Although there are various components to consider in calculating etch rate such as Ion Flux, Neutral, gas, and temperature, Addressing of this paper is limited to Ion Flux. This paper propose a scan method to compute Ion Flux faster for Plasma simulation. Also, this paper experiments and compares generally used Monte Carlo method and the proposed method based on gaussian and cosine distribution. Lastly, this paper proves that the proposed method can calculate accurate Ion Flux more efficiently than Monte Carlo method.

키워드

참고문헌

  1. R. J. Hoekstra, "A model of energy and angular distributions of fluxes to the substrate and resulting surface topology for plasma etching systems," Doctoral Dissertation, 1998.
  2. K.O. Abrokwah, "Characterization and Modeling of Plasma Etch Pattern Dependencies in Integrated Circuits," Thesis, Massachusetts Institute of Technology, 2006.
  3. L. Chen, Q. Wang, and U. Griesmann, "Plasma etching uniformity control for making large and thick dual-focus zone plates," Microelectronic Engineering, Vol.88, No.8, pp.2466-2469, August 2011. https://doi.org/10.1016/j.mee.2011.01.009
  4. G.Y. Yeom, "Plasma Etching Technology", YOUNG, 2012.
  5. D. B. Graves and M. J. Kushner, "Influence of Modeling and Simulation on the Maturation of Plasma Technology: Feature Evolution and Reactor Design", J. Vac. Sci. Technol. A21, pp.152-156, 2003.
  6. Y.H. Im, "Surface Reaction Modeling for Plasma Etching of SiO2 Thin Film", Korean Chem. Eng. Res., Vol.44, No.5, pp.520-527, 2006.
  7. Y.C. Ban, J.H. Lee, S.H. Yoon, O.S. kwon, Y.T. Kim, and T.Y. Won, "Calculation of Ion Distribution in an RF Plasma Etching System Using Monte Carlo Methods", Journal of IEEK, Vol.35, No.5, pp472-480, May 1998.
  8. A.P. Mahorowala, H.H. Sawin, "Etching of polysilicon in inductively coupled Cl2 and HBr discharges. III. Photoresist mask faceting, sidewall deposition, and microtrenching", Journal of Vacuum Sicence and Technology, Vol.20, No.3, pp.1077-1083, 2002. https://doi.org/10.1116/1.1481868
  9. "Normal distribution", Wikepedia, May 3, 2013