• Title/Summary/Keyword: Estimator based controllers

Search Result 15, Processing Time 0.049 seconds

Control of weld pool sizes in GMA welding processes using neural networks (신경회로를 이용한 GMA 용접 공정에서의 용융지의 크기 제어)

  • 임태근;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.531-536
    • /
    • 1992
  • In GMA welding processes, monitoring and control of weld quality are extremely difficult problems. This paper describes a neural network-based method for monitoring and control of weld pool sizes. First, weld pool sizes are estimated via a neural estimator using multi-point surface temperatures, which are strongly related to the formation of weld pool, and then controlled using the estimated pool sizes. Two types of controllers using the pool size estimator are designed and tested. To evaluate the performance of the designed controllers, a series of simulation studies was performed.

  • PDF

Speed control of vector-controlled BLDC motor using Neural Network (신경회로망을 이용한 벡터제어 BLDC 전동기의 속도제어)

  • Cho, Sung-Kuen;Han, Woo-Yong;Lee, Chang-Goo;Kim, Sung-Jung
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1126-1129
    • /
    • 2000
  • The equivalent transformation of a brushless DC motor into an separately exited DC motor has been possible with the vector control technique. Vector control is an effective technique for controlling variable speed drives of brushless DC motors. Conventional vector controllers, however, suffer from electrical machine parameter variations because these controllers depend on the parameters. This paper presents the vector control of brushless DC motor using a neural network. In the proposed method, a neural network is employed as on-line estimator of the nonlinear dynamic equations of brushless DC motor. The neural network based vector controller has the advantage of robustness against machine parameter variations as compared with conventional vector controller The simulation results using Matlab/Simulink verify the useful of the proposed method.

  • PDF

A Design of Adaptive Backstepping Controller for Improving Position Accuracy of Linear Motor-based Container Transportation System with Dynamic Friction (선형전동기기반 컨테이너 이송시스템의 위치정확도 향상을 위한 적응 Backstepping 제어기 설계)

  • Lee, Jin-Woo;Seo, Jung-Hyun;Han, Geun-Jo;Lee, Kwon-Soon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.405-413
    • /
    • 2006
  • In general mechanical servo systems, friction deteriorates the performance of controllers by its nonlinear characteristics. Especially, friction phenomenon causes steady-state tracking errors and limit cycles in position and velocity control systems, even though gains of controllers are tuned well in linear system model. Even if sensor is used higher accuracy level, it is difficult to improve tracking performance of the position to the same level with a general control method such as PID type. Therefore, many friction models were proposed and compensation methods have been researched actively. In this paper, we consider that the variation of mover's mass is various by loading and unloading. The normal force variation occurs by it an other parameters. Therefore, the proposed control system is composed of main position controller and a friction compensator. A parameter estimator for a nonlinear friction model is designed by adaptive control law and adaptive backstepping control method.

  • PDF

A Design of Adaptive Backstepping Controller for Improving Position Accuracy of Linear Motor-based Container Transportation System with Dynamic Friction (선형전동기기반 컨테이너 이송시스템의 위치정확도 향상을 위한 적응 Backstepping 제어기 설계)

  • Seo, Jung-Hyun;Han, Geun-Jo;Lee, Kwon-Soon;Lee, Jin-Woo
    • Journal of Navigation and Port Research
    • /
    • v.31 no.1 s.117
    • /
    • pp.55-64
    • /
    • 2007
  • In general mechanical servo systems, friction deteriorates the performance of controllers by its nonlinear characteristics. Especially, friction phenomenon causes steady-state tracking errors and limit cycles in position and velocity control systems, even though gains of controllers are tuned well in linear system model. Even if sensor is used higher accuracy level, it is difficult to improve tracking performance of the position to the same level with a general control method such as PID type. Therefore, many friction models were proposed and compensation methods have been researched actively. In this paper, we consider that the variation of mover's mass is various by loading and unloading. The normal force variation occurs by it and other parameters. Therefore, the proposed control system is composed of main position controller and a friction compensator. A parameter estimator for a nonlinear friction model is designed by adaptive control law and adaptive backstepping control method.

A wireless decentralized control experimental platform for vibration control of civil structures

  • Yu, Yan;Li, Luyu;Leng, Xiaozhi;Song, Gangbing;Liu, Zhiqiang;Ou, Jinping
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.47-56
    • /
    • 2017
  • Considerable achievements in developing structural regulators as an important method for vibration control have been made over the last few decades. The use of large quantities of cables in traditional wired control systems to connect sensors, controllers, and actuators makes the structural regulators complicated and expensive. A wireless decentralized control experimental platform based on Wi-Fi unit is designed and implemented in this study. Centralized and decentralized control strategies as sample controllers are employed in this control system. An optimal control algorithm based on Kalman estimator is embedded in the dSPACE controller and the DSP controller. To examine the performance of this control scheme, a three-story steel structure is developed with active mass dampers installed on each floor as the wireless communication platform. Experimental results show that the wireless decentralized control exhibits good control performance and has various potential applications in industrial control systems. The proposed experimental system may become a benchmark platform for the validation of the corresponding wireless control algorithm.

A High-Performance Control System of Reluctance Synchronous Motor with Direct Torque Control (직접토크제어에 의한 리럭턴스 동기전동기의 고성능 제어시스템)

  • Kim, Min-Huei;Kim, Nam-Hun;Kim, Min-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.07e
    • /
    • pp.47-52
    • /
    • 2001
  • This paper presents a high-performance control system for Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The system consist of stator flux observer, rotor position/speed estimator, torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source inverter, and F240/C31DSP controller by using fully integrated control software. The stator flux observer is based on the combined voltage and current model with stator flux feedback adaptive control that inputs are current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor position is estimated by the observed stator flux-linkage space vector. The estimated rotor speed can be determinated by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operating area. To prove the suggested control algorithm, we have a simulation and testing at actual experimental system. The developed digitally high-performance position sensorless control system are shown a good motion control response characteristic results and high performance features using 1.0Kw RSM.

  • PDF

A High-Performance Speed Sensorless Control System for Induction Motor with Direct Torque Control (직접 토크제어에 의한 속도검출기 없는 유도전동기의 고성능 제어시스템)

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.1
    • /
    • pp.18-27
    • /
    • 2002
  • This paper presents an implementation of digital high-performance speed sensorless control system of an induction motor drives with Direct Torque Control(DTC). The system consists of closed loop stator flux and torque observer, speed and torque estimators, two hysteresis controllers, an optimal switching look-up table, IGBT voltage source inverter, and TMS320C31 DSP controller board. The stator flux observer is based on the combined current and voltage model with stator flux feedback adaptive control for wide speed range. The speed estimator is using the model reference adaptive system(MRAS) with rotor flux linkages for speed turning signal estimation. In order to prove the suggested speed sensorless control algorithm, and to obtain a high-dynamic robust adaptive performance, we have some simulations and actual experiments at low(20rpm) and high(1000rpm) speed areas. The developed speed sensorless system are shown a good speed control response characteristic, and high performance features using 2.2[kW] general purposed induction motor.

A Sensorless control system of Reluctance Synchronous Motor with Direct Torque Control (직접 토크제어에 의한 리럭턴스 동기 전동기의 센서리스 제어시스템)

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik;Kim, Dong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.161-164
    • /
    • 2001
  • This paper presents a digital speed sensorless control system for Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The system consist of stator flux observer, rotor speed estimator, torque estimator two hysteresis band controllers, an optimal switching look-up table. IGBT voltage source inverter, and TMS320C31DSP controller by using fully integrated control software. The stator flux observer is based on the combined voltage and current model with stator flux feedback adaptive control that inputs are current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor speed is estimated by the observed stator flux-linkage space vector. The estimated rotor speed can be determinated by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operating area. In order to prove the suggested speed sensorless control algorithm. There are some simulation and testing at actual experimental system. The developed digitally high- performance speed sensorless control system are shown a good speed control response characteristic results and high Performance features using 1.0Kw RSM.

  • PDF

A High-Performance Sensorless Control System of Reluctance Synchronous Motor with Direct Torque Control

  • Kim Min-Huei;Kim Nam-Hun;Choi Kyeong-Ho;Kim Dong-Hee;Hwang Dong-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.355-359
    • /
    • 2001
  • This paper presents an implementation of digital control system of speed sensorless for Reluctance Synchronous Motor (RSM) drives with DTC. The control system consists of stator flux observer, rotor position/speed/torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source inverter, and TMS320C31 DSP controller by using fully integrated control software. The stator flux observer is based on the combined voltage and current model with stator flux feedback adaptive control that inputs are current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor position is estimated by observed stator flux-linkage space vector. The estimated rotor speed is determined by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operating area. It does not require the knowledge of any motor parameters, nor particular care for motor starting, In order to prove the suggested control algorithm, we have a simulation and testing at actual experimental system. The developed sensorless control system is shown a good speed control response characteristic results and high performance features in 50/1000 rpm with 1.0Kw RSM having 2.57 ratio of d/q reluctance.

  • PDF