• Title/Summary/Keyword: Estimator

Search Result 2,709, Processing Time 0.027 seconds

Bezier curve smoothing of cumulative hazard function estimators

  • Cha, Yongseb;Kim, Choongrak
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.3
    • /
    • pp.189-201
    • /
    • 2016
  • In survival analysis, the Nelson-Aalen estimator and Peterson estimator are often used to estimate a cumulative hazard function in randomly right censored data. In this paper, we suggested the smoothing version of the cumulative hazard function estimators using a Bezier curve. We compare them with the existing estimators including a kernel smooth version of the Nelson-Aalen estimator and the Peterson estimator in the sense of mean integrated square error to show through numerical studies that the proposed estimators are better than existing ones. Further, we applied our method to the Cox regression where covariates are used as predictors and suggested a survival function estimation at a given covariate.

Variable Impedance Control for Industrial Manipulators Based on Sensor-Less External Force Estimator for CPPS (CPPS를 위한 산업용 매니플레이터의 힘 센서리스 외력 추정기 기반 적응 임피던스 제어)

  • Park, Jongcheon;Han, Seungyong;Jin, Yongsik;Lee, Sangmoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.5
    • /
    • pp.259-267
    • /
    • 2019
  • This paper proposes a structure of a variable impedance control system based on sensor-less external force estimator of industrial manipulators for cyber physical production systems (CPPS). To implement CPPS, a feedback system is constructed by using the robot operating system (ROS) and an external force estimator which is designed to measure the external force applied to the manipulator without a force sensor. Based on the robot dynamics, the robot-human cooperating system for the cyber physics production system is implemented through a controller that changes the impedance characteristics of the manipulator according to the situation using the external force estimator. Simulation and experimental results verify the effectiveness of the proposed control system.

Robust extreme quantile estimation for Pareto-type tails through an exponential regression model

  • Richard Minkah;Tertius de Wet;Abhik Ghosh;Haitham M. Yousof
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.6
    • /
    • pp.531-550
    • /
    • 2023
  • The estimation of extreme quantiles is one of the main objectives of statistics of extremes (which deals with the estimation of rare events). In this paper, a robust estimator of extreme quantile of a heavy-tailed distribution is considered. The estimator is obtained through the minimum density power divergence criterion on an exponential regression model. The proposed estimator was compared with two estimators of extreme quantiles in the literature in a simulation study. The results show that the proposed estimator is stable to the choice of the number of top order statistics and show lesser bias and mean square error compared to the existing extreme quantile estimators. Practical application of the proposed estimator is illustrated with data from the pedochemical and insurance industries.

Sensorless Speed Control of IPMSM Using Unscented Kalman Filter (엔센티드 칼만필터를 이용한 IPMSM의 센서리스 속도제어)

  • Jeon, Yong-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.12
    • /
    • pp.1865-1874
    • /
    • 2013
  • In this paper, a design method of speed and position estimator based on unscented Kalman filter is proposed for the no sensor control of IPMSM(Interior Permanent Magnet Synchronous Motor). The proposed method is simple more than the estimator designed with rotation axis for current measurement. Also the proposed state estimator is designed including nonlinear terms of the estimator. The controller which constructed using nonlinear back-stepping control method is operated speed and current control using the estimated speed and currents information. Through simulation, the performance of the designed estimator is compared to the estimator which is designed to synchronize d-q axis.

Generalized Composite Estimator with Intraclass Correlation in p-level Rotation Sampling (P-수준교체표본에서 교체그룹내 상관관계를 고려한 일반화 복합추정량)

  • 박유성;배경화;김기환
    • The Korean Journal of Applied Statistics
    • /
    • v.14 no.1
    • /
    • pp.81-90
    • /
    • 2001
  • One of the Repeated survey which estimates variability of population, we can be consider rotation sample survey. There are two kinds of rotation sample survey - onelevel rotation sample survey and multi-level rotation sample survey. In rotation sample survey, Composite estimator is used to measure level or level change of the population. This study suggests Generalized Composite estimator as considering intraclass correlation in multi-level rotation sample survey, and optimal weight minimizing variance of estimator. Numerical example shows efficiency of Generalized Composite estimator as considering intraclass correlation according to the sample unit and change degree of intraclass correlation in the rotation group.

  • PDF

A Composite Estimator for the Take-Nothing Stratum of Cut-Off Sampling (복합추정량을 이용한 절사표본 총합 추정에 관한 연구)

  • Kim, Ji-Hak;Shin, Key-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.6
    • /
    • pp.1115-1128
    • /
    • 2011
  • Cut-off sampling that discards a part of the population from the sampling frame, is a widely used method for a highly skewed population like a business survey. Usually to the estimate of population total, we need to estimate the total of the take-nothing stratum. Many estimators have been developed to estimate the total of the take-nothing stratum. In this paper, we suggest a new composite estimator which combines the estimator suggested by Sarndal et al. (1992) and a ratio estimator obtained by small samples from the take-nothing stratum. Small simulation studies are performed for the comparison of the estimators and we confirm that the new suggested estimator is superior to the others.

Comparative Analysis of Learning Methods of Fuzzy Clustering-based Neural Network Pattern Classifier (퍼지 클러스터링기반 신경회로망 패턴 분류기의 학습 방법 비교 분석)

  • Kim, Eun-Hu;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1541-1550
    • /
    • 2016
  • In this paper, we introduce a novel learning methodology of fuzzy clustering-based neural network pattern classifier. Fuzzy clustering-based neural network pattern classifier depicts the patterns of given classes using fuzzy rules and categorizes the patterns on unseen data through fuzzy rules. Least squares estimator(LSE) or weighted least squares estimator(WLSE) is typically used in order to estimate the coefficients of polynomial function, but this study proposes a novel coefficient estimate method which includes advantages of the existing methods. The premise part of fuzzy rule depicts input space as "If" clause of fuzzy rule through fuzzy c-means(FCM) clustering, while the consequent part of fuzzy rule denotes output space through polynomial function such as linear, quadratic and their coefficients are estimated by the proposed local least squares estimator(LLSE)-based learning. In order to evaluate the performance of the proposed pattern classifier, the variety of machine learning data sets are exploited in experiments and through the comparative analysis of performance, it provides that the proposed LLSE-based learning method is preferable when compared with the other learning methods conventionally used in previous literature.

Robust spectral estimator from M-estimation point of view: application to the Korean housing price index (M-추정에 기반을 둔 로버스트 스펙트럴 추정량: 주택 가격 지수에 대한 응용)

  • Pak, Ro Jin
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.3
    • /
    • pp.463-470
    • /
    • 2016
  • In analysing a time series on the frequency domain, the spectral estimator (or periodogram) is a very useful statistic to identify the periods of a time series. However, the spectral estimator is very sensitive in nature to outliers, so that the spectral estimator in terms of M-estimation has been studied by some researchers. Pak (2001) proposed an empirical method to choose a tuning parameter for the Huber's M-estimating function. In this article, we try to implement Pak's estimation proposal in the spectral estimator. We use the Korean housing price index as an example data set for comparing various M-estimating results.

Reexamination of Estimating Beta Coecient as a Risk Measure in CAPM

  • Phuoc, Le Tan;Kim, Kee S.;Su, Yingcai
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.5 no.1
    • /
    • pp.11-16
    • /
    • 2018
  • This research examines the alternative ways of estimating the coefficient of non-diversifiable risk, namely beta coefficient, in Capital Asset Pricing Model (CAPM) introduced by Sharpe (1964) that is an essential element of assessing the value of diverse assets. The non-parametric methods used in this research are the robust Least Trimmed Square (LTS) and Maximum likelihood type of M-estimator (MM-estimator). The Jackknife, the resampling technique, is also employed to validate the results. According to finance literature and common practices, these coecients have often been estimated using Ordinary Least Square (LS) regression method and monthly return data set. The empirical results of this research pointed out that the robust Least Trimmed Square (LTS) and Maximum likelihood type of M-estimator (MM-estimator) performed much better than Ordinary Least Square (LS) in terms of eciency for large-cap stocks trading actively in the United States markets. Interestingly, the empirical results also showed that daily return data would give more accurate estimation than monthly return data in both Ordinary Least Square (LS) and robust Least Trimmed Square (LTS) and Maximum likelihood type of M-estimator (MM-estimator) regressions.

Performance Analysis of a Class of Single Channel Speech Enhancement Algorithms for Automatic Speech Recognition (자동 음성 인식기를 위한 단채널 음질 향상 알고리즘의 성능 분석)

  • Song, Myung-Suk;Lee, Chang-Heon;Lee, Seok-Pil;Kang, Hong-Goo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.2E
    • /
    • pp.86-99
    • /
    • 2010
  • This paper analyzes the performance of various single channel speech enhancement algorithms when they are applied to automatic speech recognition (ASR) systems as a preprocessor. The functional modules of speech enhancement systems are first divided into four major modules such as a gain estimator, a noise power spectrum estimator, a priori signal to noise ratio (SNR) estimator, and a speech absence probability (SAP) estimator. We investigate the relationship between speech recognition accuracy and the roles of each module. Simulation results show that the Wiener filter outperforms other gain functions such as minimum mean square error-short time spectral amplitude (MMSE-STSA) and minimum mean square error-log spectral amplitude (MMSE-LSA) estimators when a perfect noise estimator is applied. When the performance of the noise estimator degrades, however, MMSE methods including the decision directed module to estimate a priori SNR and the SAP estimation module helps to improve the performance of the enhancement algorithm for speech recognition systems.