• Title/Summary/Keyword: Estimation of wind speed

Search Result 259, Processing Time 0.027 seconds

Estimation of spatial evapotranspiration using Terra MODIS satellite image and SEBAL model in mixed forest and rice paddy area (SEBAL 모형과 Terra MODIS 영상을 이용한 혼효림, 논 지역에서의 공간증발산량 산정 연구)

  • Lee, Yong Gwan;Jung, Chung Gil;Ahn, So Ra;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.3
    • /
    • pp.227-239
    • /
    • 2016
  • This study is to estimate Surface Energy Balance Algorithm for Land (SEBAL) daily spatial evapotranspiration (ET) comparing with eddy covariance flux tower ET in Seolmacheon mixed forest (SMK) and Cheongmicheon rice paddy (CFK). The SEBAL input data of Albedo, Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI) from Terra MODIS products and the meteorological data of wind speed, and solar radiation were prepared for 2 years (2012-2013). For the annual average flux tower ET of 302.8 mm in SMK and 482.0 mm in CFK, the SEBAL ETs were 183.3 mm and 371.5 mm respectively. The determination coefficients ($R^2$) of SEBAL ET versus flux tower ET for total periods were 0.54 in SMK and 0.79 in CFK respectively. The main reason of SEBAL ET underestimation for both sites was from the determination of hot pixel and cold pixel of the day and affected to the overestimation of sensible heat flux.

An Assessment of Areal Evaportranspiration Using Landsat TM Data (Landsat TM 자료를 이용한 광역 증발산량 추정)

  • Chae, Hyo-Seok;Song, Yeong-Su;Park, Jae-Yeong
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.4
    • /
    • pp.471-482
    • /
    • 2000
  • Surface energy balance components were evaluated by Landsat TM data and GIS with meteorological data. Calibration and validation for the applicability of this methodology were made through the estimating of the large-scale evapotranspiration (ET). In addition, sensitivity and error analysis was conducted to see the effects of the surface energy balance components on ET and the accuracy of each components. Bochong-chon located on the upper part of Guem River basin was selected as the case study area. Spatial distribution map of ET were produced for five dates: Jan. 1, Apr. 3, May. 10, and Nov. 27, 1995. The study results showed tat ET was greatly varied with the aspect and theland use type on the surface. In the case of having northeast and southeast in the aspect, ET was linearly increased depending on growing net radiation. While surface temperature has a high value, NDVI(Normalized Difference Vegetation Index) has a low value in the vegetated area. Therefore, ground heat flux was increased but ET was relatively decreased. The results of sensitivity and error analysis showed that net radiation is most sensitive and effective, ranging from 12.5% to 23.6% of sensitivity. Furthermore, the surface temperature, air temperature, and wind speed have the significant effects on ET estimation using remotely sensed data.

  • PDF

Estimation of Frost Occurrence using Multi-Input Deep Learning (다중 입력 딥러닝을 이용한 서리 발생 추정)

  • Yongseok Kim;Jina Hur;Eung-Sup Kim;Kyo-Moon Shim;Sera Jo;Min-Gu Kang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.26 no.1
    • /
    • pp.53-62
    • /
    • 2024
  • In this study, we built a model to estimate frost occurrence in South Korea using single-input deep learning and multi-input deep learning. Meteorological factors used as learning data included minimum temperature, wind speed, relative humidity, cloud cover, and precipitation. As a result of statistical analysis for each factor on days when frost occurred and days when frost did not occur, significant differences were found. When evaluating the frost occurrence models based on single-input deep learning and multi-input deep learning model, the model using both GRU and MLP was highest accuracy at 0.8774 on average. As a result, it was found that frost occurrence model adopting multi-input deep learning improved performance more than using MLP, LSTM, GRU respectively.

A Study of the Urban Tree Canopy Mean Radiant Temperature Mitigation Estimation (도시림의 여름철 평균복사온도 저감 추정 연구)

  • An, Seung Man;Son, Hak-gi;Lee, Kyoo-Seock;Yi, Chaeyeon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.1
    • /
    • pp.93-106
    • /
    • 2016
  • This study aimed to estimate and evaluate the thermal mitigation of the urban tree canopy on the summer outdoor environment by quantitative use of mean radiant temperature. This study applied the SOLWEIG model based $T_{mrt}$ comparison method by using both (1) urban tree canopy presence examples and (2) urban tree canopy absence examples as constructed from airborne LiDAR system based three-dimensional point cloud data. As a result, it was found that an urban tree canopy can provide a decrease in the entire domain averaged daily mean $T_{mrt}$ about $5^{\circ}C$ and that the difference can increase up to $33^{\circ}C$ depending both on sun position and site conditions. These results will enhance urban microclimate studies such as indices (e.g., wind speed, humidity, air temperature) and biometeorology (e.g., perceived temperature) and will be used to support forest based public green policy development.

Estimation of Air-Sea Heat Exchange Using BUOY Data at the Yellow Sea, Korea (부이 관측자료를 이용한 서해 해역의 해양-대기 열교환량 산출)

  • kang, Yune-Jeung;Hwang, Seung-On;Kim, Tae-Hee;Nam, Jae-Cheol
    • Journal of the Korean earth science society
    • /
    • v.22 no.1
    • /
    • pp.40-46
    • /
    • 2001
  • Heat exchange between the atmosphere and sea is produced using the data from two 3m discus buoy installed by KMA in 1996. The meteorological and oceanic characteristics at the Dukjukdo and Chilbaldo buoy for the period 1996 ${\sim}$ 2000 are discussed. Daily averaged sensible heat and latent heat flux at each site are estimated from bulk aerodynamic method using given data and analyzed. Quantitative analyses show SST indicates 1-year cycle like air temperature but has 1 month lag. Sea level pressure is lowest in July, humidity is higher from May to August, and wind speed has averaged value of 5 m/s and higher in autumn and winter. Sensible heat flux analyses present that strong heat loss from the sea occurs in autumn and winter and weak heat loss from atmosphere appears in spring and summer, and net sensible heat loss from the sea is found throughout the year. The ocean significantly releases latent heat into atmosphere from August to May but get a little latent heat from atmosphere in other months. Net latent heat loss from the sea is larger than net sensible heat loss except in January and February. Comparison with two sites suggests that the magnitude of heat flux and their fluctuation are generally stronger at Dukjukdo than at Chilbaldo. In case study, both sensible and latent heat flux is a little more at Chilbaldo in March 1998, but substantially stronger at Dukjukdo in November 1996.

  • PDF

Estimation of Reference Crop Evapotranspiration Using Backpropagation Neural Network Model (역전파 신경망 모델을 이용한 기준 작물 증발산량 산정)

  • Kim, Minyoung;Choi, Yonghun;O'Shaughnessy, Susan;Colaizzi, Paul;Kim, Youngjin;Jeon, Jonggil;Lee, Sangbong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.6
    • /
    • pp.111-121
    • /
    • 2019
  • Evapotranspiration (ET) of vegetation is one of the major components of the hydrologic cycle, and its accurate estimation is important for hydrologic water balance, irrigation management, crop yield simulation, and water resources planning and management. For agricultural crops, ET is often calculated in terms of a short or tall crop reference, such as well-watered, clipped grass (reference crop evapotranspiration, $ET_o$). The Penman-Monteith equation recommended by FAO (FAO 56-PM) has been accepted by researchers and practitioners, as the sole $ET_o$ method. However, its accuracy is contingent on high quality measurements of four meteorological variables, and its use has been limited by incomplete and/or inaccurate input data. Therefore, this study evaluated the applicability of Backpropagation Neural Network (BPNN) model for estimating $ET_o$ from less meteorological data than required by the FAO 56-PM. A total of six meteorological inputs, minimum temperature, average temperature, maximum temperature, relative humidity, wind speed and solar radiation, were divided into a series of input groups (a combination of one, two, three, four, five and six variables) and each combination of different meteorological dataset was evaluated for its level of accuracy in estimating $ET_o$. The overall findings of this study indicated that $ET_o$ could be reasonably estimated using less than all six meteorological data using BPNN. In addition, it was shown that the proper choice of neural network architecture could not only minimize the computational error, but also maximize the relationship between dependent and independent variables. The findings of this study would be of use in instances where data availability and/or accuracy are limited.

Empirical Estimation and Diurnal Patterns of Surface PM2.5 Concentration in Seoul Using GOCI AOD (GOCI AOD를 이용한 서울 지역 지상 PM2.5 농도의 경험적 추정 및 일 변동성 분석)

  • Kim, Sang-Min;Yoon, Jongmin;Moon, Kyung-Jung;Kim, Deok-Rae;Koo, Ja-Ho;Choi, Myungje;Kim, Kwang Nyun;Lee, Yun Gon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.3
    • /
    • pp.451-463
    • /
    • 2018
  • The empirical/statistical models to estimate the ground Particulate Matter ($PM_{2.5}$) concentration from Geostationary Ocean Color Imager (GOCI) Aerosol Optical Depth (AOD) product were developed and analyzed for the period of 2015 in Seoul, South Korea. In the model construction of AOD-$PM_{2.5}$, two vertical correction methods using the planetary boundary layer height and the vertical ratio of aerosol, and humidity correction method using the hygroscopic growth factor were applied to respective models. The vertical correction for AOD and humidity correction for $PM_{2.5}$ concentration played an important role in improving accuracy of overall estimation. The multiple linear regression (MLR) models with additional meteorological factors (wind speed, visibility, and air temperature) affecting AOD and $PM_{2.5}$ relationships were constructed for the whole year and each season. As a result, determination coefficients of MLR models were significantly increased, compared to those of empirical models. In this study, we analyzed the seasonal, monthly and diurnal characteristics of AOD-$PM_{2.5}$model. when the MLR model is seasonally constructed, underestimation tendency in high $PM_{2.5}$ cases for the whole year were improved. The monthly and diurnal patterns of observed $PM_{2.5}$ and estimated $PM_{2.5}$ were similar. The results of this study, which estimates surface $PM_{2.5}$ concentration using geostationary satellite AOD, are expected to be applicable to the future GK-2A and GK-2B.

Development of Normalized Difference Blue-ice Index (NDBI) of Glaciers and Analysis of Its Variational Factors by using MODIS Images (MODIS 영상을 이용한 빙하의 정규청빙지수(NDBI) 개발 및 변화요인 분석)

  • Han, Hyangsun;Ji, Younghun;Kim, Yeonchun;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.4
    • /
    • pp.481-491
    • /
    • 2014
  • Blue-ice area is a glacial ice field in ice sheet, ice shelf and glaciers where snow ablation and sublimation is larger than snowfall. As the blue-ice area has large influences on the meteorite concentration mechanism and ice mass balance, it is required to quantify the concentration of blue-ice. We analyzed spectral reflectance characteristics of blue-ice, snow and cloud by using MODIS images obtained over blue-ice areas in McMurdo Dry Valleys, East Antarctica, from 2007 to 2012. We then developed Normalized Difference Blue-ice Index (NDBI) algorithm which quantifies the concentration of blue-ice. Snow and cloud have a high reflectance in visible and near-infrared (NIR) bands. Reflectance of blue-ice is high in blue band, while that lowers in the NIR band. NDBI is calculated by dividing the difference of reflectance in the blue and NIR bands by the sum of reflectances in the two bands so that NDBI = (Blue-NIR)/(Blue + NIR). NDBI calculated from the MODIS images showed that the blue-ice areas have values ranging from 0.2 to 0.5, depending on the exposure and concentration of blue-ice. It is obviously different from that of snow and cloud that has values less than 0.2 or rocks with negative values. The change of NDBI values in the blue-ice area has higher correlation with snow depth ($R^2=0.699$) than wind speed ($R^2=0.012$) or air temperature ($R^2=0.278$), all measured at a meteorological station installed in McMurdo Dry Valleys. As the snow depth increased, the NDBI value decreased, which suggests that snow depth can be estimated from NDBI values over blue-ice areas. The NDBI algorithm developed in this study will be useful for various polar research fields such as meteorite exploration, analysis of ice mass balance as well as the snow depth estimation.

Evaluation of Meteorological Elements Used for Reference Evapotranspiration Calculation of FAO Penman-Monteith Model (FAO Penman-Monteith 모형의 증발산량 산정에 이용되는 기상요소의 평가)

  • Hur, Seung-Oh;Jung, Kang-Ho;Ha, Sang-Keun;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.5
    • /
    • pp.274-279
    • /
    • 2006
  • The exact estimation of crop evapotranspiration containing reference or potential evapotranspiration is necessary for decision of crop water requirements. This study was carried out for the evaluation and application of various meteorological elements used for the calculation of reference evapotranspiration (RET) by FAO Penman-Monteith (PM) model. Meteorological elements including temperature, net radiation, soil heat flux, albedo, relative humidity, wind speed measured by meteorological instruments are required for RET calculation by FAO PM model. The average of albedo measured for crop growing period was 0.20, ranging from 0.12 to 0.23, and was slightly lower than 0.23. Determinant coefficients by measured albedo and green grass albedo were 0.97, 0.95 and standard errors were 0.74, 0.80 respectively. Usefulness of deductive regression models was admitted. To assess an influence of soil heat flux (G) on FAO PM, RET with G=0 was compared with RETs using G at 5cm soil depth ($G_{5cm}$) and G at surface ($G_{0cm}$). As the results, RET estimated by G=0 was well agreed with RET calculated by measured G. Therefore, estimated net radiation, G=0 and albedo of green grass could be used for RET calculation by FAO PM.