An Assessment of Areal Evaportranspiration Using Landsat TM Data

Landsat TM 자료를 이용한 광역 증발산량 추정

  • 채효석 (한국수자원공사 수자원연구소) ;
  • 송영수 (전북대학교 공과대학 자원공학과) ;
  • 박재영 (한국수자원공사 연수원)
  • Published : 2000.08.01

Abstract

Surface energy balance components were evaluated by Landsat TM data and GIS with meteorological data. Calibration and validation for the applicability of this methodology were made through the estimating of the large-scale evapotranspiration (ET). In addition, sensitivity and error analysis was conducted to see the effects of the surface energy balance components on ET and the accuracy of each components. Bochong-chon located on the upper part of Guem River basin was selected as the case study area. Spatial distribution map of ET were produced for five dates: Jan. 1, Apr. 3, May. 10, and Nov. 27, 1995. The study results showed tat ET was greatly varied with the aspect and theland use type on the surface. In the case of having northeast and southeast in the aspect, ET was linearly increased depending on growing net radiation. While surface temperature has a high value, NDVI(Normalized Difference Vegetation Index) has a low value in the vegetated area. Therefore, ground heat flux was increased but ET was relatively decreased. The results of sensitivity and error analysis showed that net radiation is most sensitive and effective, ranging from 12.5% to 23.6% of sensitivity. Furthermore, the surface temperature, air temperature, and wind speed have the significant effects on ET estimation using remotely sensed data.

본 연구에서는 Landsat TM 자료와 GIS 기법을 이용하여 지표면 에너지 수지 요소를 공간적으로 추출하고, 추출된 에너지 수지 요소의 적용성을 검토하기 위해서 광역 증발산량을 추정하였다. 추정결과에 대한 정확도 및 열수지 요소가 증발산량에 미치는 영향을 분석하기 위해서 민감도분석과 오차분석을 실시하였다. 연구 대상지역은 금강 상류의 보정천이며, 1995년도 1월 11일, 4월 1일, 5월 3일, 10월 10일 및 11월 27일에 획득된 5개의 Landsat TM자료를 이용하였다. 연구결과 지표면의 경사 방향과 토지피복 형태에 따라 증발산량의 변화가 크게 나타났으며, 경사 방향이 북동이나 남동방향일 경우 식생지수(NDVI; Normalized Difference Vegetation Index) 값이 증가함으로써 지중열 전도량이 증가하게 되어 상대적으로 증발산랴이 감소하는 것으로 나타났다. 민감도 및 오차분석 결과, 순방사량이 12.5% 내지 23.6%의 민감도로서 지표면 온도와 대기온도 및 풍속 등도 다른 인자에 비해 가장 큰 영향을 미치는 것을 알 수 있었다.

Keywords

References

  1. 시스템공학연구소 (1993). 원격탐사 및 GIS를 이용한 하천유역의 환경변화 조사기법 연구(II). 과학기술처
  2. 시스템공학연구소 (1996) 환경정보관리를 위한 GIS개발(II), 과학기술처, pp. 367-530
  3. Brakke, T.W, and Kanemasu, E.T. (1981). 'Isolation estimation from satellite measure-ment of reflected radiation.' Remote Sens. Environ., Vol. 11. pp. 157-167 https://doi.org/10.1016/0034-4257(81)90015-8
  4. Carlson, T.N.. and Boland, F.E. (1978). 'Analysis of urban-rural canopy using a surface heat flux/temperature model' J. Appl. Meteorol.. Vol. 17. pp. 998-1013 https://doi.org/10.1175/1520-0450(1978)017<0998:AOURCU>2.0.CO;2
  5. Chavez, Jr. P.S. (1996). 'Image-based atmospheric corrections-Revisited and Improved' Photo. Engin. Remote Sensing, Vol. 62, pp. 153-162
  6. Clothier, B.E., Clawson, K.L., Moran, M.S, Reginato, R.J., and Jackson, R.D. (1986). 'Estimation of soil heat flux from net radiation during the growth of alfalfa.' Agri. For. Meteorol., Vol. 37, pp. 319-329 https://doi.org/10.1016/0168-1923(86)90069-9
  7. Engman, E. T.. and Gurney, R. J. (1991). Remote sensing in hydrology, Chapman & Hall, New York
  8. Gautier, C, Diak, G., and Masse, S. (1980). 'A simple model to estimate incident solar radiation at the surface from GOES satellite data.' J. Appl. Meteorol, Vol. 19. pp. 1005-1011 https://doi.org/10.1175/1520-0450(1980)019<1005:ASPMTE>2.0.CO;2
  9. Gurney, R.J. and Hall, D.K. (1983). 'Satellite-derived surface energy balance estimates in the Alaskan sub-arctic.' J. Climate Meteorol., Vol. 22, pp. 115-125 https://doi.org/10.1175/1520-0450(1983)022<0115:SDSEBE>2.0.CO;2
  10. Hatfield, J.L, Reginato, R.J., and Idso, S.B., (1984). 'Evaluation of canopy temperature-evapotranspiration models over various crops.' Agric. For. Meteorol., Vol. 32, pp. 41-53 https://doi.org/10.1016/0168-1923(84)90027-3
  11. Jackson, R.D., Hatfield, J.L., Reginato, K.J., Idso, S.B., and Pinter, Jr., P.J. (1983). 'Estimates of daily evapotranspiration from one time of day measurements.' Agri. Water Mang., Vol 7, pp. 351-362
  12. Jackson, R.D., Pinter, P.J. Jr., and Reginato, R.J. (1985). 'Net radiation calculated from remote multispectral and ground station meteorological data.' Net radiation calculated from remote multispectral and ground station meteorological data, Vol. 35, pp. 153-164 https://doi.org/10.1016/0168-1923(85)90081-4
  13. Jackson, R.D., Moran, M.S., Gay, L.W., and Raymond, L.H (1987) 'Evaluating evaporation from field crops using airborne radiometry and ground-based meteorological data.' Irrg. Sci., Vol. 8, pp. 81-90
  14. Kraus, E.B. (1972), Atmospheric-Ocean interaction, Atmospheric-Ocean interaction, Oxford
  15. Kustas, W.P., Jackson, R.D., and Asrar, G. (1989). 'Estimating surface energy balance components from remotely sensed data.' Theory and Application of Optical Remote Sensing, edited by G. Asrar, New York, John Wiley & Sons, pp. 604-627
  16. Kustas, WP , and Daughty, C.S.T (1990). 'Estimation of the soil heat flux/net radiation ratio from spectral data.' Agri. For. Meteorol, Vol. 49, pp. 205-233 https://doi.org/10.1016/0168-1923(90)90033-3
  17. Kustas, W.P. (1995). 'Recent advances associated with large scale field experiments in hydrology.' Rev. Geophys. Suppl., pp. 959-965
  18. Kustas, W.P. and Norman, J.M. (1996). 'Use of remote sensing for evapotranspiration monitoring over land surfaces.' Hydrol. Sci. J., Vol. 41, pp. 495-516
  19. Marht, L., and Ek, M. (1984). 'The influence of atmospheric stability on potential evaporation.' J. Climate Appl. Meteorol., Vol. 23, pp. 222-234 https://doi.org/10.1175/1520-0450(1984)023<0222:TIOASO>2.0.CO;2
  20. Moran, M.S., Jackson, R.D., Raymond, L.H., Gay, L.W, and Slater, P.W. (1989) 'Mapping surface energy balance components by combining Landsat Thematic Mapper and ground-based meteorological data.' Remote Sens. Environ., Vol. 30, pp. 77-87 https://doi.org/10.1016/0034-4257(89)90049-7
  21. Norman, J.M., and Becker, F. (1995) 'Terminology in thermal infrared remote sensing of natural surfaces.' Remote Sens. Rev., Vol. 12, pp. 159-173 https://doi.org/10.1016/0168-1923(95)02259-Z
  22. Price, J.C. (1982). 'Estimation of regional scale evaporation through analysis of satellite thermal-infrared data.' IEEE Trans. Geosci. Remote sens., GE-20, 286-292
  23. Reginato, R.J., Jackson, R.D., and Pinter, P.J. Jr. (1985). 'Evaportranspiration calculated from remote multispectral and ground station meteorological data.' Remote Sens. Environ., Vol. 18, pp. 75-89 https://doi.org/10.1016/0034-4257(85)90039-2
  24. Soer, G.J.R. (1980). 'Estimation of regional evapotranspiration and soil moisture conditions using remotely sensed crop surface temperatures.' Remote Sens. Environ, Vol. 9, pp. 27-45 https://doi.org/10.1016/0034-4257(80)90045-0
  25. Sugita, M, and Brutsaert, W., (1991). 'Daily evaporation over a region from lower boundary layer profiles.' Water Resources Res., Vol. 27. pp. Water Resources Res.
  26. Tarply, J.D. (1979). 'Estimating incident solar radiation at the surface from geostationary satellite data.' J. Appl. Meteorol., Vol. 18, pp. 1172-1181 https://doi.org/10.1175/1520-0450(1979)018<1172:EISRAT>2.0.CO;2