• Title/Summary/Keyword: Estimation error estimator

Search Result 393, Processing Time 0.025 seconds

Speed control of IPMSM using the Disturbance Estimator (외란 추정기를 이용한 매입형 영구자석 동기전동기의 속도제어)

  • Jeon, Yong-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.867-872
    • /
    • 2022
  • The effect of load is an important factor in precise speed control of a motor. n this study, we design a state observer that can estimate and define one state of disturbance including errors and nonlinear terms of mathematical models, which is not easy with a mathematical model. Then, the observation gain is set so that the estimation error of the state observation converges to 0, and the estimated state is used in the back stepping controller to design a controller capable of precise speed tracking. As a result of applying to 1 [hw] class Interior Permanent Magnet Synchronous Motor, excellent stste variable observation and tracking performance can be confirmed.

Efficiency of Variance Estimators for Two-stage PPS Systematic Sampling (2단 크기비례 계통추출법의 분산추정량 효율성 비교)

  • Kim, Young-Won;Kim, Yeny;Han, Hye-Eun;Kwak, Eun-Sun
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.6
    • /
    • pp.1033-1041
    • /
    • 2013
  • In this paper, we investigate several variance estimators for pps systematic sampling. Unfortunately, there is no unbiased variance estimators for a systematic sample because systematic sampling can be regarded as a random selection of one cluster. This study provides guidance on which variance estimator may be more appropriate than others in several circumstances. We judge the efficiency of variance estimators for systematic sampling based on of their relative biases and relative mean square error. Also, we investigate variance estimation problems for two-stage systematic sampling applied for the Food Raw Material Consumption Survey and the Establishment Labor Force Survey simulation study, in order to consider the popular two-stage pps systematic sample design for establishment and household survey in Korea.

Efficient Channel Estimation Method for ZigBee Receiver in Train Environment (철도 환경에서 ZigBee 수신기를 위한 효율적인 채널 추정 기법)

  • Lee, Jingu;Kim, Daehyun;Kim, Jaehoon;Kim, Younglok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.4
    • /
    • pp.12-19
    • /
    • 2016
  • The monitoring system in railway is under study to forecast any derailment and accident by defect of train. Because the monitoring system is composed of wireless sensor network based on ZigBee-communication between inside and outside of train, the study for wireless channel analysis is required. Especially, if multipath delay profile exist in the channel, the equalizer and channel estimator can be required for preventing receiver performance degradation. Therefore, we analyzed the wireless channel in train environment using measured data and, proposed the channel estimation method through the characterisitic of chip code, under the consideration of the channel characteristics in train. To show the performance of proposed method, we demonstrate the performance by mean square error(MSE), computational complexity and bit error rate(BER).

Recurrent Neural Network Based Distance Estimation for Indoor Localization in UWB Systems (UWB 시스템에서 실내 측위를 위한 순환 신경망 기반 거리 추정)

  • Jung, Tae-Yun;Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.4
    • /
    • pp.494-500
    • /
    • 2020
  • This paper proposes a new distance estimation technique for indoor localization in ultra wideband (UWB) systems. The proposed technique is based on recurrent neural network (RNN), one of the deep learning methods. The RNN is known to be useful to deal with time series data, and since UWB signals can be seen as a time series data, RNN is employed in this paper. Specifically, the transmitted UWB signal passes through IEEE802.15.4a indoor channel model, and from the received signal, the RNN regressor is trained to estimate the distance from the transmitter to the receiver. To verify the performance of the trained RNN regressor, new received UWB signals are used and the conventional threshold based technique is also compared. For the performance measure, root mean square error (RMSE) is assessed. According to the computer simulation results, the proposed distance estimator is always much better than the conventional technique in all signal-to-noise ratios and distances between the transmitter and the receiver.

A Study on Bagging Neural Network for Predicting Defect Size of Steam Generator Tube in Nuclear Power Plant (원전 증기발생기 세관 결함 크기 예측을 위한 Bagging 신경회로망에 관한 연구)

  • Kim, Kyung-Jin;Jo, Nam-Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.302-310
    • /
    • 2010
  • In this paper, we studied Bagging neural network for predicting defect size of steam generator(SG) tube in nuclear power plant. Bagging is a method for creating an ensemble of estimator based on bootstrap sampling. For predicting defect size of SG tube, we first generated eddy current testing signals for 4 defect patterns of SG tube with various widths and depths. Then, we constructed single neural network(SNN) and Bagging neural network(BNN) to estimate width and depth of each defect. The estimation performance of SNN and BNN were measured by means of peak error. According to our experiment result, average peak error of SNN and BNN for estimating defect depth were 0.117 and 0.089mm, respectively. Also, in the case of estimating defect width, average peak error of SNN and BNN were 0.494 and 0.306mm, respectively. This shows that the estimation performance of BNN is superior to that of SNN.

Stationary Emitter Geolocation Based on NLSE Using LOBs Considering the Earth's Curvature (지구 곡률이 고려된 LOB를 이용하는 NLSE 기반의 고정형 신호원 위치추정)

  • Park, Byungkoo;Kim, Sangwon;Ahn, Jaemin;Kim, Youngmin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.3
    • /
    • pp.661-672
    • /
    • 2017
  • This paper introduces the NLSE(Nonlinear Least Squared Estimator) using curved LOBs(Line Of Bearings) considering the earth curvature based on sphere to avoid the map conversion distortion and minimize the estimation error. This paper suggests a method improving a performance of the NLSE using curved LOBs by using an ellipsoid model. The analysis of the simulation results shows that the NLSE using curved LOBs has better performance than the conventional triangulation method and can improve its performance using a suggested method.

A Novel Carrier-to-noise Power Ratio Estimation Scheme with Low Complexity for GNSS Receivers (GNSS 수신기를 위한 낮은 복잡도를 갖는 새로운 반송파 대 잡음 전력비 추정기법)

  • Yoo, Seungsoo;Baek, Jeehyeon;Yeom, Dong-Jin;Jee, Gyu-In;Kim, Sun Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.7
    • /
    • pp.767-773
    • /
    • 2014
  • The carrier-to-noise power ratio is a key parameter for determining the reliability of PVT (Position, Velocity, and Time) solutions which are obtained by a GNSS (Global Navigation Satellite System) receiver. It is also used for locking a tracking loop, deciding the re-acquisition process, and processing advanced navigation in the receiver subsystem. The representative carrier-to-noise power ratio estimation schemes are the narrowband-wideband power ratio method (NW), the MM (Moment Method), and Beaulieu's method (BL). The NW scheme is the most classical one for commercial GNSS receivers. It is often used as an authoritative benchmark for assessing carrier-to-noise power estimation schemes. The MM scheme is the least biased solution among them, and the BL scheme is a simpler scheme than the MM scheme. This paper focuses on the less biased estimation with low complexity when the residual phase noise remains, then proposes a novel carrier-to-noise power ratio estimation scheme with low complexity for GNSS receivers. The asymptotic bias of the proposed scheme is derived and compared with others, and the simulation results demonstrate that the complexity of the proposed scheme is lowest among them, while the estimation performance of the proposed scheme is similar to those of the BL and MM schemes in normal and high gained reception environments.

Schematic Cost Estimation Method using Case-Based Reasoning: Focusing on Determining Attribute Weight (사례기반추론을 이용한 초기단계 공사비 예측 방법: 속성 가중치 산정을 중심으로)

  • Park, Moon-Seo;Seong, Ki-Hoon;Lee, Hyun-Soo;Ji, Sae-Hyun;Kim, Soo-Young
    • Korean Journal of Construction Engineering and Management
    • /
    • v.11 no.4
    • /
    • pp.22-31
    • /
    • 2010
  • Because the estimated cost at early stage has great influence on decisions of project owner, the importance of early cost estimation is increasing. However, it depends on experience and knowledge of the estimator mainly due to shortage of information. Those tendency developed into case-based reasoning(CBR) method which solves new problems by adapting previous solution to similar past problems. The performance of CBR model is affected by attribute weight, so that its accurate determination is necessary. Previous research utilizes mathematical method or subjective judgement of estimator. In order to improve the problem of previous research, this suggests CBR schematic cost estimation method using genetic algorithm to determine attribute weight. The cost model employs nearest neighbor retrieval for selecting past case. And it estimates the cost of new cases based on cost information of extracted cases. As the result of validation for 17 testing cases, 3.57% of error rate is calculated. This rate is superior to accuracy rate proposed by AACE and the method to determine attribute weight using multiple regression analysis and feature counting. The CBR cost estimation method improve the accuracy by introducing genetic algorithm for attribute weight. Moreover, this makes user understand the problem-solving process easier than other artificial intelligence method, and find solution within short time through case retrieval algorithm.

Bayesian Estimators Using Record Statistics of Exponentiated Inverse Weibull Distribution

  • Kim, Yong-Ku;Seo, Jung-In;Kang, Suk-Bok
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.3
    • /
    • pp.479-493
    • /
    • 2012
  • The inverse Weibull distribution(IWD) is a complementary Weibull distribution and plays an important role in many application areas. In this paper, we develop a Bayesian estimator in the context of record statistics values from the exponentiated inverse Weibull distribution(EIWD). We obtained Bayesian estimators through the squared error loss function (quadratic loss) and LINEX loss function. This is done with respect to the conjugate priors for shape and scale parameters. The results may be of interest especially when only record values are stored.

Estimation and Demonstration Test Plan for Availability with Weibull Lifetime and Lognormal Repair Time (와이블 수명분포와 대수정규 수리시간분포 하에서 가용도의 추정과 실증시험계획)

  • Seo, Sun-Keun
    • Journal of Applied Reliability
    • /
    • v.14 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • One important measure of performance for a repairable system is steady-state availability. In this paper, a method to estimate and establish confidence interval for the steady-state availability under Weibull lifetime and lognormal repair time distributions is proposed. Also, bias and mean squared error of a point estimator for an availability are investigated. In addition, a procedure to derive the sample size and critical value for availability demonstration test is presented and illustrated with a numerical example.