• Title/Summary/Keyword: Estimation Equation

Search Result 1,844, Processing Time 0.033 seconds

RLS Adaptive IIR Filters Based on Equation Error Methods Considering Additive Noises

  • Muneyasu, Mitsuji;Kamikawa, Hidefumi;Hinamoto, Takao
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.215-218
    • /
    • 2000
  • In this paper, a new algorithm for adaptive IIR filters based on equation error methods using the RLS algorithm is proposed. In the proposed algorithm, the concept of feedback of the scaled output error proposed by tin and Unbehauen is employed and the forgetting factor is varied in adaptation process for avoiding the accumulation of the estimation error for additive noise . The proposed algorithm has the good convergence property without the parameter estimation error under the existence of mea-surement noise.

  • PDF

A Practical Real-Time LOS Rate Estimator with Time-Varying Measurement Noise Variance (시변 측정잡음 모델을 고려한 실시간 시선각 변화율 추정필터)

  • Na, Won-Sang;Lee, Jin-Ik
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2082-2084
    • /
    • 2003
  • A practical real-time LOS rate estimator is proposed to handle the time-varying measurement noise statistics. To calculate the optimal Kalman gain, the algebraic transformation method is taken into account. By using the algebraic transformation, the differential algebraic Riccati equation(DARE) regarding estimation error covariance is replaced by the simple algebraic Riccati equation(ARE). The proposed LOS estimation filter gain is only a function of relative range. Consequently, the proposed method is computationally very efficient and suitable for embedded environment.

  • PDF

Brushless DC Motor Electromagnetic Torque Estimation with Single-Phase Current Sensing

  • Cham, Chin-Long;Samad, Zahurin Bin
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.866-872
    • /
    • 2014
  • The purpose of this paper was to find an effective method for measuring electromagnetic torque produced by a brushless DC motor with single-phase current sensing in real-time. A torque equation is derived from the theory of brushless DC motor. This equation is then validated experimentally with a motor dynamometer. A computer algorithm is also proposed to implement the electromagnetic torque estimation equation in real-time. Electromagnetic torque is a linear function of phase current. Estimating the electromagnetic torque in real-time using single-phase current is not appropriate with existing equations, however, because of the rectangular alternating-pulse nature of the excitation current. With some mathematical manipulation to the existing equations, the equation derived in this paper overcame this limitation. The equation developed is simple and so it is computationally efficient, and it takes only motor torque constant and single-phase current to evaluate the electromagnetic torque; no other parameters such as winding resistances, inductances are needed. The equation derived is limited to the three-phase brushless DC motor. It can, however, easily be extended to the multiphase brushless DC motor with the technique described in this paper.

A DISCONTINUOUS GALERKIN METHOD FOR THE CAHN-HILLIARD EQUATION

  • CHOO S. M.;LEE Y. J.
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.113-126
    • /
    • 2005
  • The Cahn-Hilliard equation is modeled to describe the dynamics of phase separation in glass and polymer systems. A priori error estimates for the Cahn-Hilliard equation have been studied by the authors. In order to control accuracy of approximate solutions, a posteriori error estimation of the Cahn-Hilliard equation is obtained by discontinuous Galerkin method.

Parameter Estimation for a Hilbert Space-valued Stochastic Differential Equation ?$\pm$

  • Kim, Yoon-Tae;Park, Hyun-Suk
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.3
    • /
    • pp.329-342
    • /
    • 2002
  • We deal with asymptotic properties of Maximum Likelihood Estimator(MLE) for the parameters appearing in a Hilbert space-valued Stochastic Differential Equation(SDE) and a Stochastic Partial Differential Equation(SPDE). In paractice, the available data are only the finite dimensional projections to the solution of the equation. Using these data we obtain MLE and consider the asymptotic properties as the dimension of projections increases. In particular we explore a relationship between the conditions for the solution and asymptotic properties of MLE.

ON THE STABILITY OF RECIPROCAL-NEGATIVE FERMAT'S EQUATION IN QUASI-β-NORMED SPACES

  • Kang, Dongseung;Kim, Hoewoon B.
    • The Pure and Applied Mathematics
    • /
    • v.26 no.2
    • /
    • pp.85-97
    • /
    • 2019
  • In this paper we introduce the reciprocal-negative Fermat's equation induced by the famous equation in the Fermat's Last Theorem, establish the general solution in the simplest cases and the differential solution to the equation, and investigate, then, the generalized Hyers-Ulam stability in a $quasi-{\beta}-normed$ space with both the direct estimation method and the fixed point approach.

A Study on Real Time Catenary Impedance Estimation Technique using the Synchronized Measuring Data between Substation and Train (변전소와 차량간의 동기화를 통한 실시간 전차선로 임피던스 예측 기법 연구)

  • Jung, Hosung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1458-1464
    • /
    • 2013
  • This paper proposed a new real time catenary impedance estimation technique using synchronized power data from the measured data of operating vehicle and substation for catenary protective relay and fault locator setting. This paper presented estimation equation of catenary impedance using synchronized power data between substation and vehicle of AT feeding system for the performance verification of the proposed technique. Also AC feeding system is modeled through power analysis program and performance was verified through simulation according to various load changes. We verified that average 2.38%(distance equivalent 23.8 m) error appeared between the proposed estimation equation of catenary impedance and power analysis program simulation output in no connection double track system between up track and down track. Furthermore, We confirmed that estimation error is bigger depending on the increasing the distance from substation and vehicle impedance using only using vehicle current when calculating vehicle impedance in connection double track system between up track and down track. But, We confirmed that the proposed technique estimated accurately catenary impedance regardless of vehicle impedance and distance from substation.

Unknown-Parameter Estimation of Electric-Hydraulic Servo Cylinder Based on Measurements (측정 데이터 기반 전기-유압 서보 실린더의 미지 변수 추정)

  • Seung, Ji Hoon;Yoo, Sung Goo;Seul, Nam O;Noh, Jackyou
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.6
    • /
    • pp.347-353
    • /
    • 2019
  • Electric-hydraulic sever cylinders are used in many offshore applications such as wind energy farms, solar farms and plants. Jack-up barges are often used for these offshore system operations. Jack-up barge control is up/down by hydraulic cylinder position control. Working in harsh environments can lead to changes in internal parameters. This nonlinearity makes precise control difficult. In order to overcome the problems, we proposed a method of unknown-parameter estimation algorithm based on measurements obtained by system. In this paper, we employee Unscented Kalman filter (UKF) to estimate states and unknown-parameter from augmented nonlinear equation. Performance of estimation results is verified in simulation on an environments of Matlab. The estimation results of the state and unknown-parameter show that the estimation error of unknown-parameter is reduced according to decreasing the state estimation error.

A Computationally Efficient Time Delay and Doppler Estimation for the LFM Signal (LFM 신호에 대한 효과적인 시간지연 및 도플러 추정)

  • 윤경식;박도현;이철목;이균경
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.8
    • /
    • pp.58-66
    • /
    • 2001
  • In this paper, a computationally efficient time delay and doppler estimation algorithm is proposed for active sonar with Linear Frequency Modulated (LFM) signal. To reduce the computational burden of the conventional estimation algorithm, an algebraic equation is used which represents the relationship between the time delay and doppler in cross-ambiguity function of the LFM signal. The algebraic equation is derived based on the Fast maximum Likelihood (FML) method. Using this algebraic relation, the time delay and doppler are estimated with two 1-D search instead of the conventional 2-D search. The estimation errors of the proposed algorithm are analyzed for various SNR's. The simulation result demonstrates the good performance of the proposed algorithm.

  • PDF