• Title/Summary/Keyword: Essential applications

Search Result 1,275, Processing Time 0.027 seconds

Synthesis and Properties of Two Dimensional Doped Transition Metal Dichalcogenides

  • Yoon, Aram;Lee, Zonghoon
    • Applied Microscopy
    • /
    • v.47 no.1
    • /
    • pp.19-28
    • /
    • 2017
  • Since graphene was discovered in 2004, two-dimensional (2D) materials have been actively studied. Especially, 2D transition metal dichalcogenides (TMDs), such as $MoS_2$ and $WS_2$, have been the subject of significant research because of their exceptional optical, electrical, magnetic, catalytic, and morphological properties. Therefore, these materials are expected to be used in a variety of applications. Furthermore, tuning the properties of TMDs is essential to improve their performance and expand their applications. This review classifies the various doping methods of 2D TMDs, and it summarizes how the dopants interact with the materials and how the performance of the materials improves depending on the synthesis methods and the species of the dopants.

Current Status and Future Promise of the Human Microbiome

  • Kim, Bong-Soo;Jeon, Yoon-Seong;Chun, Jongsik
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.16 no.2
    • /
    • pp.71-79
    • /
    • 2013
  • The human-associated microbiota is diverse, varies between individuals and body sites, and is important in human health. Microbes in human body play an essential role in immunity, health, and disease. The human microbiome has been studies using the advances of next-generation sequencing and its metagenomic applications. This has allowed investigation of the microbial composition in the human body, and identification of the functional genes expressed by this microbial community. The gut microbes have been found to be the most diverse and constitute the densest cell number in the human microbiota; thus, it has been studied more than other sites. Early results have indicated that the imbalances in gut microbiota are related to numerous disorders, such as inflammatory bowel disease, colorectal cancer, diabetes, and atopy. Clinical therapy involving modulating of the microbiota, such as fecal transplantation, has been applied, and its effects investigated in some diseases. Human microbiome studies form part of human genome projects, and understanding gleaned from studies increase the possibility of various applications including personalized medicine.

Analysis of cause-of-death mortality and actuarial implications

  • Kwon, Hyuk-Sung;Nguyen, Vu Hai
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.6
    • /
    • pp.557-573
    • /
    • 2019
  • Mortality study is an essential component of actuarial risk management for life insurance policies, annuities, and pension plans. Life expectancy has drastically increased over the last several decades; consequently, longevity risk associated with annuity products and pension systems has emerged as a crucial issue. Among the various aspects of mortality study, a consideration of the cause-of-death mortality can provide a more comprehensive understanding of the nature of mortality/longevity risk. In this case study, the cause-of-mortality data in Korea and the US were analyzed along with a multinomial logistic regression model that was constructed to quantify the impact of mortality reduction in a specific cause on actuarial values. The results of analyses imply that mortality improvement due to a specific cause should be carefully monitored and reflected in mortality/longevity risk management. It was also confirmed that multinomial logistic regression model is a useful tool for analyzing cause-of-death mortality for actuarial applications.

Development and Application of Korean Dummy Models (한국인 인체 모델의 개발과 적용)

  • Lee, Sang-Cheol;Son, Gwon;Kim, Seong-Jin
    • Journal of the Ergonomics Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.13-23
    • /
    • 2002
  • Human dummies are essential tools in the development of such products as vehicle have been actively used not only in reach and view field tests. but also in impact perception evaluations. This study attempted to obtain geometric and dynamic model body segments from Korean anthropometric data. The investigation focused on the de both human and dummy for the geometric and inertial properties. The dynamic modeli being suggested is based on rigid body dynamics using fifteen individual body segments by joins. The segments are connected at the locations representing the physical joint body so that each segment has its mass and moment of inertia. For visual three-dimensional graphic was used for easier implementation of the dumn applications. For applications, proposed Korean dummies Were used in dynamic crash and driver's view and reach test modules were developed in virtual environment.

Constructions and Applications of Digital Virtual Factory for Section-steel Shop in Shipbuilding Company (조선 형강 디지털 가상공장 구축 및 활용)

  • Han, Sang-Dong;Shin, Jong-Gye;Kim, Yu-Suk;Yoon, Tae-Hyuk;Kim, Gun-Yeon;Noh, Sang-Do
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.1
    • /
    • pp.27-35
    • /
    • 2008
  • Digital Virtual Manufacturing is a technology facilitating effective product developments and agile productions via digital models representing the physical and logical schema and the behavior of real manufacturing systems. A digital virtual factory as a well-designed and integrated environment is essential for successful applications of this technology. In this research, we construct a sophisticated digital virtual factory for the section steel shop in a Korean shipbuilding company by 3-D CAD and virtual manufacturing simulation. The NIST-AMRF CIM hierarchical model and workflow analysis using IDEF methodology are also applied. This digital virtual factory can be applied for diverse engineering activities in design, manufacturing and control of the real factory, and improvements in quality of engineering and savings in time from design to production in shipbuilding are possible.

Quantitative Reliability Assessment for Safety Critical System Software

  • Chung, Dae-Won
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.3
    • /
    • pp.386-390
    • /
    • 2007
  • At recent times, an essential issue in the replacement of the old analogue I&C to computer-based digital systems in nuclear power plants becomes the quantitative software reliability assessment. Software reliability models have been successfully applied to many industrial applications, but have the unfortunate drawback of requiring data from which one can formulate a model. Software that is developed for safety critical applications is frequently unable to produce such data for at least two reasons. First, the software is frequently one-of-a-kind, and second, it rarely fails. Safety critical software is normally expected to pass every unit test producing precious little failure data. The basic premise of the rare events approach is that well-tested software does not fail under normal routine and input signals, which means that failures must be triggered by unusual input data and computer states. The failure data found under the reasonable testing cases and testing time for these conditions should be considered for the quantitative reliability assessment. We presented the quantitative reliability assessment methodology of safety critical software for rare failure cases in this paper.

High-Performance Korean Morphological Analyzer Using the MapReduce Framework on the GPU

  • Cho, Shi-Won;Lee, Dong-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.573-579
    • /
    • 2011
  • To meet the scalability and performance requirements of data analyses, which often involve voluminous data, efficient parallel or concurrent algorithms and frameworks are essential. We present a high-performance Korean morphological analyzer which employs the MapReduce framework on the graphics processing unit (GPU). MapReduce is a programming framework introduced by Google to aid the development of web search applications on a large number of central processing units (CPUs). GPUs are designed as a special-purpose co-processor. Their programming interfaces are typically formulated for graphics applications. Compared to CPUs, GPUs have greater computation power and memory bandwidth; however, GPUs are more difficult to program because of the design of their architectures. The performance of the Korean morphological analyzer using the MapReduce framework on the GPU is evaluated in comparison with the CPU-based model. The proposed Korean Morphological analyzer shows promising scalable performance on distributed computing with the GPU.

Magnetic Powder and Nano-powder Composites for Electrical Converters

  • Mazurkiewicz, Marian;Rhee, Chang-Kyu;Weglinski, Bogumil
    • Journal of Powder Materials
    • /
    • v.15 no.4
    • /
    • pp.320-330
    • /
    • 2008
  • On the base of experience in development of Magnetic Powder Composites, and particularly Soft Magnetic Composites, authors are trying to systematize classification and indicate possible development prospective of Magnetic Nanocomposites (MN) technology and their applications in electrical converters. Clear classification and systematization, at an early stage of any materials and technology development, are essential and lead for better understanding and communication between researchers and industry involved. This concern MN as well and it seems to be the right time to make it at present stage of their development. Presented proposal of classification distinguishes various types of MN by their magnetic properties and area of possible applications. It is not a close set of types, and can be extended due to increase of knowledge concern these nanocomposites.

The Development and Characteristics Analysis of High Precision Monitoring Sensor for the Marine Installation (해양설비용 정밀 모니터링 센서의 개발 및 특성 분석)

  • Cho, Jeong-Hwan;Ko, Sung-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.10
    • /
    • pp.101-106
    • /
    • 2013
  • This paper proposes the new high precision monitoring sensor for the Marine Installation. Among variety of sensor network systems, wireless information transmission through the marine is one of the enabling technologies for the development of future marine-observation systems and sensor networks. Applications of marine monitoring range from oil industry to aquaculture, and include instrument monitoring, pollution control, climate recording, prediction of natural disturbances. For these marine applications to be available, however, the provision of precise location information using monitoring sensor is essential. In this paper, the dynamic characteristics for obtaining the location information of monitoring sensor is analyzed. The theoretical and experimental studies have been carried out. The presented results from the above investigation show considerably excellent performance for the Monitoring for the Marine Installation.

Ozone Generation of a Small Sawtooth-to-Cylinder Electrode Applied a Pulse Voltage (원톱날 -원통 전극간의 오존 발생특성)

  • 문재덕;김정호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.9
    • /
    • pp.651-654
    • /
    • 1987
  • There are a number of small scale application fields of ozone, such as food conservation and/or storage in refrigerators, containers and storage rooms, deodorization in the production and living areas, protection against biohazards, bleaching of fabrics, etc. For these applications, miniaturization, ozone controllability and costdown of the ozonizer are the most essential points, whereas power efficiency is the most imporant factor in the case of a large scale ozonizer used in various industrial applications. It has been developed a novel sawtooth-to-cylinder type micro-ozonizer meeting above the three points by using a negative pulse corona discharge. As a result of the observations of pulse coronas affecting ozone generation, it is found that the maximum ozone concentration is generated at the pulse streamer coronas in both positive and negative case. The ozone concentration (20ppm/2l/min) generated by the negative pulse corona is about 2 times higher than that of the positive pulse corona, and could be controllable linearly by adjusting the dc input voltage of the [supply-inth ] cinventional small scale ozonizers. As a result, the present ozonizer is also very good to be used as a micro-ozonizer.

  • PDF