• Title/Summary/Keyword: Essential Fatty Acid

Search Result 411, Processing Time 0.033 seconds

Fatty Acid Changes of Glycolipids during Processing and in Storage of the Salted and Dried Mullet Roe (염건숭어알의 가공과 저장중 당지질의 지방산 함량변화)

  • 조상준
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.20 no.3
    • /
    • pp.266-271
    • /
    • 1991
  • The salted and dried mullet roe was manufactured by the conventional processing method. The processing conditions were the salting with soybean sauce of 10% NaCl, 1.2cm of thickness, 3m/sec of air velocity, 70% of RH and $20^{\circ}C$ of wind-drying temperature for 20 days. The fractional compositions of free and bound lipids were classified in neutral, Glyco - and phospholipids of the processed roe. The fatty acid content of glycolipids was measured during processing and storage. Major fatty acids of glycolipids were $C_{16:0},\;C_{18:1}\;and\;C_{18:2}$ whose total amount was 7.71mg/100mg occupying 77% of the total fatty acids of glycolipids. The ratio of unsaturated fatty acid to the saturated fatty acid of bound glycolipids was 2.09 and that of free glycolipids was as low as about 0.92. The rations of the polyenoic acids to the monoenoic acids were very low as 0.10-0.78. The essential fatty acids of bound glycolipids were 4.32mg/100mg and a very much decreased content of 1.46mg/100mg at 9 week storage time.

  • PDF

Effects of alpha-linolenic acid and essential amino acids on the proliferation and differentiation of C2C12 myoblasts

  • Zhou, Dongjie;Li, Xiao-Han;Lee, Song‑Hee;Heo, Geun;Cui, Xiang-Shun
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.1
    • /
    • pp.17-26
    • /
    • 2022
  • Alpha-linolenic acid is an important polyunsaturated fatty acid that exhibits anticancer, anti-inflammatory, and antioxidative effects. In this study, we investigated the protective effects of alpha-linolenic acid on the cell proliferation and differentiation of C2C12 cells under essential amino acid-deficient conditions. Different concentrations of alpha-linolenic acid and essential amino acids were added to the growth and differentiation media. The concentrations of 10 µM of alpha-linolenic acid and 2% essential amino acid were chosen for subsequent experiments. Supplementation with alpha-linolenic acid and essential amino acids improved the proliferation and differentiation of C2C12 cells and significantly increased the mRNA levels of catalase, superoxide dismutase, B-cell lymphoma-2, and beclin-1 as well as the protein levels of PPARγ coactivator-1α compared to those in the controls. Moreover, supplementation with alpha-linolenic acid and essential amino acids reduced the levels of phosphorylated H2A.X variant histone, Bcl-2-associated X, p53, and light chain 3 during C2C12 cell proliferation, and increased the expression levels of myogenic factors 4 (myogenin) and 5 during C2C12 cell differentiation. Overall, we determined that alpha-linolenic acid and essential amino acids maintained the cell proliferation and differentiation of C2C12 cells via their anti-oxidative, anti-apoptotic, and anti-autophagic effects.

Effect of Culture Conditions on Characteristics of Growth and Production of Docosahexaenoic acid (DHA) by Schizochytrium mangrovei (배양조건에 따른 Schizochytrium mangrovei의 성장 및 Docosahexaenoic acid의 생산특성)

  • Jeong, U-Cheol;Choi, Byeong-Dae;Kang, Seok-Joong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.2
    • /
    • pp.144-153
    • /
    • 2014
  • Both docosahexaenoic acid (DHA, 22:6n-3) and eicosapentaenoic acid (EPA, 20:5n-3) have attracted increasing attention since the first epidemiological report on the importance of n-3 essential fatty acids. Lipids in microbial cells play various biological roles and, consequently, much research has been carried out on their role in cell physiology. The lipid composition of microorganisms can exhibit considerable variations depending on environment. The effects of culture conditions, temperature (15, 20, 24, 28, 32 and $36^{\circ}C$), salinity (10, 20, 30, 40 and 50 psu), pH (pH5, 6, 7, 8 and 9), rotation speeds (50, 100, 150 and 200 rpm), carbon sources, nitrogen sources and C/N ratio on the production of docosahexaenoic acid, fatty-acid profiles, and acids secreted to the broth culture by the oleaginous microorganism, Schizochytrium mangrovei (KCTC 11117BP), were studied. Temperature (initially $28^{\circ}C$), salinity (20 psu), pH (pH7), rotation speeds (100 rpm), organism fatty acids, and secreted acids in the broth were varied during cultivation of S. mangrovei. At pH 7.0, S. mangrovei was able to accumulate lipids up to 40% of its biomass, with 13% (w/w) DHA content. The monosaccharides glucose and fructose, and yeast extract were suitable carbon and nitrogen sources, respectively. The primary omega-3 polyunsaturated fatty acid produced was docosahexaenoic acid.

Correlations between the Fatty Acid Composition of Serum Phospholipids and Blood Pressure

  • Lee, Yang-Cha-Kim;Shim, Yoo-Jin;Chung, Eun-Jung;Kim, Soo-Yeon;Yangsoo Jang;Lee, Jong-Ho
    • Nutritional Sciences
    • /
    • v.5 no.2
    • /
    • pp.68-74
    • /
    • 2002
  • Studies of the relationship between the composition of serum fatty acids and blood pressure are complex and controversial. Fatty acids, important constituents of biological membranes, could potentially affect vasoreactivities including blood pressure. In this study the compositions of fatty acids in serum phospholipids were compared between three types of hypertensive subjects (men, pre-menopausal women, and post-menopausal women) and their respective nrmotensive controls. Serum lipids were extracted and phospholipids were separated by thin layer chromatography. The percentage of palmitic acid (16 : 0) in serum phospholipids was significantly higher and the percentage of stearic acid (18 : 0) was significantly lower in all three hypertensive groups, compared with their corresponding control groups. Only in the group of post-menopausal women, palmitic acid was closely associated wish increases in both systolic (SBP) and diastolic blood pressure (DBP), while stearic acid was associated with decreases in both SBP and DBP. The polyunsaturated fatty acids in serum phospholipids behaved differently from saturated fatty acids. The ratios of products / precursor fatty acids, such as $\sumLCPUFA\omega6/18 : 2\omega$6, 20 : 4$\omega$6/18 : 2$\omega$6, ∑LCPUFA$\omega$3/18 : 3$\omega$3 and 22 : 6$\omega$3/20 : 5$\omega$3, were all clearly associated with both SBP and DBP in hypertensive, post-menopausal women. Desaturation and elongation in fatty acid metabolism could affect the bioavailability of eicosanoid precursors. Changes in the constituent fatty acids of phospholipids and eicosanoid precursors may also influence fluidity, ionic transport, hormone receptors and enzyme activities in biological membranes. In conclusion, both systolic and diastolic blood pressure in post-menopausal women was positively associated with the level of palmitic acid, and negatively associated with the level of stearic acid, in serum phospholipids. The relationships between serum phospholipid-$\omega$6 and $\omega$3 series fatty acids and blood pressure in women, especially in post-menopausal women, require further investigation by taking into consideration hormonal status and eicosanoid metabolism. Funker study is needed to determine the value of dietary manipulation of fatty acid constituents of serum phospholipids, relating to hypertension in women.

Chemical Composition of Cirsium japonicum var. ussurience Kitamura and the Quantitative Changes of Major Compounds by the Harvesting Season (엉겅퀴 정유의 화학적 조성 및 수확시기에 따른 주요 화합물 함량 변화)

  • Choi, Hyang-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.3
    • /
    • pp.327-334
    • /
    • 2016
  • This study investigated the chemical composition of Cirsium japonicum var. ussurience Kitamura essential oil and the quantitative changes of major volatile flavor compounds according to the harvesting season. The essential oils obtained by the method of hydrodistillation extraction from aerial parts of C. japonicum var. ussurience Kitamura were analyzed by GC and GC-MS. Sixty-four volatile flavor compounds were identified in the essential oil from C. japonicum var. ussurience Kitamura harvested in May 2012; hexadecanoic acid (49.31%) was the most abundant compound, followed by 6,10,14-trimethyl-2-pentadecanone (13.72%), phytol (13.40%) and 9-hexadecenoic acid (4.16%). Eighty-three compounds were identified in the essential oil from the plant harvested in October 2012; phytol (40.56%), hexadecanoic acid (17.69%), 6,10,14-trimethyl-2-pentadecanone (13.71%), and caryophyllene oxide (4.15%) were the most abundant compounds. Types and levels of volatile compounds from different harvesting seasons varied. The essential oil composition of C. japonicum var. ussurience Kitamura harvested in the spring and autumn was characterized by higher contents of aliphatic fatty acid, diterpene and sesquiterpene, respectively.

Chemical Composition of Lutus Seed(Nelumbo nucifera Gaertner) and Their Lipid and Protein Composition (연밥의 유지와 단백질의 구성에 관한 연구)

  • Shin, Dong-Hwa;Kim, In-Won;Kwon, Kyoung-Soohn;Kim, Myoung-Sook;Kim, Mi-Ra;Choi, Ung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.6
    • /
    • pp.1187-1190
    • /
    • 1999
  • Lotus seed(Nelumbo nucifera Gaertner), known as traditional medicine as an antifebrile, antipsychotic, and cantihypertensive agent, was analyzed the chemical composition of lipid and protein. The seed com posed of 12.2% moisture, 2.3% crude lipid, 19.5% crude protein, 61.3% carbohydrate, 2.1% crude fibre, and 4.1% ash. The lipid showed iodine value of 97.9 that is lower than that of soybean oil and sesame oil, and similar to peanut oil and cotton seed oil. The fatty acid composition of the oil were the highest in content of linoleic acid which occupied 58.3% and saturated vs unsaturated fatty acid was 20.9:79.1. Especially behenic acid content, 6.9%, was higher than other plant oils. Sixteen amino acids were detected in the protein from the seed and glutamic acid content was the highest as 4.5% in dehulled kernel. The portion of essential amino acid was 31.1%.

  • PDF

Lipid Extraction from Spirulina platensis using Microwave for Biodiesel Production

  • Kalsum, Ummu;Kusuma, Heri Septya;Roesyadi, Achmad;Mahfud, Mahfud
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.301-304
    • /
    • 2019
  • Microwave was designed for lipid extraction from green algae (Spirulina platensis). Microalgae-solvent (various solvents) were extracted and heated using microwave at 600 W for around 40 min. The maximum yield obtained within this period was 12.530% of lipid compared to just 1.293% for Soxhlet extraction. Lipid analysis revealed that those with higher essential fatty acid content consist of saturated fatty acid (SAFA) and polyunsaturated fatty acid (PUFA) which could be used for biodiesel production.

Chemical Composition of Thermal Treatment Yam (Dioscorea batatas DECNE.)

  • Kim, Han-Soo;Duan, Yishan;Ryu, Jae-Young;Kim, Sang-Woo;Jang, Seong-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.7-15
    • /
    • 2015
  • In this study, the thermal treatment yam (Dioscorea batatas DECNE.) was analyzed for its proximate and nutritional compositions including mineral, vitamin, amino acids and fatty acids. Thermal treatment yam is mainly consisted of carbohydrate (70.3%) with small amounts of crude protein (15.8%), crude ash (5.1%) and crude fat (1.6%). It was found to be a good source of essential minerals such as K (1100.2 mg/100 g), Mg (99.4 mg/100 g), Ca (54.8 mg/100 g) and Na (44.9 mg/100 g) but Zn (4.8 mg/100 g) and Fe (0.2 mg/100g) content was low. Little amounts of vitamin E (8.3 mg/100g), vitamin C (3.5 mg/100g) and vitamin B1 (2.1 mg/100g) could be found. The amino acid analysis revealed that the yam was superior with respect to serine (1454.2 mg%), lysine (684.6 mg%) and histidine (684.6 mg%). Essential amino acids were calculated to be 2849.3 mg%. The amino acid profiles showed that thermal treatment yam is limiting in isoleucine and phenylaline. Linoleic acid was the most predominant fatty acids with the value of 47.3% followed by palmitic acid (24.7%) and oleic acid (12.7%). And the unsaturated fatty acids including oleic acid and linoleic acid were present in big quantities in thermal treatment yam.

Development of Imitation Milk (II). Feed Efficiency Ratio and Over-All Nutritive Value (대용우유 제조에 관한 연구 (제2보). 대용우유의 조성과 영양가)

  • Y. J. Yoo;T. Y. Kim;J. K. Lee;S. H. Kim;T. J. Kim
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.2
    • /
    • pp.125-131
    • /
    • 1977
  • Soymilk prepared from soaked beans under processing conditions indicating in table 2, mixed with vegetable oil, carbohydrate, whey powder, and sodium-caseinate, and fortified with essential amino acids, vitamins and minerals and then made the imitation milk by spray drying. The Feed Efficiency Ratio (FER) and Over-All Nutritive value of spray dried imitation milk were tested with weanling Albino Rats and by chemical analysis methods. The FER of imitation milk M-2, and humanized milk, were respectively 0.24, 0.25 and that of cow's milk, imitation milk M-1 were 0.21, 0.20, compared with 0.24 for imitation milk M-2. The amino acid and fatty acid composition in imitation milk were analyzed by Gaschromatography and Amino Acid Autoanalyzer. The present paper describes the result of studies on the Feed Efficiency Ratio and Over-All Lutritive value concerning amino acid and fatty acid composition in imitation milk. We found that quality of essential amino acids and polyunsaturate fatty acid composition in imitation milk have an strong effect on Feed Efficiency Ratio.

  • PDF

An Essential Role of the N-Terminal Region of ACSL1 in Linking Free Fatty Acids to Mitochondrial β-Oxidation in C2C12 Myotubes

  • Nan, Jinyan;Lee, Ji Seon;Lee, Seung-Ah;Lee, Dong-Sup;Park, Kyong Soo;Chung, Sung Soo
    • Molecules and Cells
    • /
    • v.44 no.9
    • /
    • pp.637-646
    • /
    • 2021
  • Free fatty acids are converted to acyl-CoA by long-chain acyl-CoA synthetases (ACSLs) before entering into metabolic pathways for lipid biosynthesis or degradation. ACSL family members have highly conserved amino acid sequences except for their N-terminal regions. Several reports have shown that ACSL1, among the ACSLs, is located in mitochondria and mainly leads fatty acids to the β-oxidation pathway in various cell types. In this study, we investigated how ACSL1 was localized in mitochondria and whether ACSL1 overexpression affected fatty acid oxidation (FAO) rates in C2C12 myotubes. We generated an ACSL1 mutant in which the N-terminal 100 amino acids were deleted and compared its localization and function with those of the ACSL1 wild type. We found that ACSL1 adjoined the outer membrane of mitochondria through interaction of its N-terminal region with carnitine palmitoyltransferase-1b (CPT1b) in C2C12 myotubes. In addition, overexpressed ACSL1, but not the ACSL1 mutant, increased FAO, and ameliorated palmitate-induced insulin resistance in C2C12 myotubes. These results suggested that targeting of ACSL1 to mitochondria is essential in increasing FAO in myotubes, which can reduce insulin resistance in obesity and related metabolic disorders.