• Title/Summary/Keyword: Error wave propagation method

Search Result 48, Processing Time 0.022 seconds

Analysis of Stability Condition and Wideband Characteristics of 3D Isotropic Dispersion(ID)-FDTD Algorithm (3차원 ID-FDTD 알고리즘의 Stability Condition과 광대역 특성 분석)

  • Kim, Woo-Tae;Koh, Il-Suek;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.4
    • /
    • pp.407-415
    • /
    • 2011
  • The stability condition and wideband characteristics of 3D ID-FDTD algorithm which has low dispersion error with isotropic dispersion are presented in this paper. 3D ID-FDTD method was proposed to improve the defect of the Yee FDTD such as the anisotropy and large dispersion error. The published paper calculated the stability condition of 3D ID-FDTD algorithm by using numerical method, however, it is thought that the examples were not sufficient to verify the stability condition. Thus, in this paper, various simulations are included in order to hold reliability under the conditions that the plane wave propagation is assumed with a single frequency and a wideband frequency. Also, the 3D ID-FDTD algorithm is compared to those that have the similar FDTD algorithm with ID-FDTD such as Forgy's method and non-standard FDTD method in a wideband. Finally, the radar cross section(RCS) for the large sphere with high dielectric constant is calculated.

Design and Fabrication of a PD Detector for Power Cable Diagnosis (전력케이블 진단을 위한 부분방전 검출장치의 설계 및 제작)

  • Song Jae-Yong;Seo Hwang-Dong;Kil Gyung-Suk;Han Moon-Soeb;Jang Dong-Uk
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.777-782
    • /
    • 2005
  • In this paper, we designed and fabricated a partial discharge (PD) detector to diagnose the soundness of CNCV cables by analyzing PD pulses and to predict discharge locations. The PD detector is consisted of a coupling network with a discharge free capacitor and a detection impedance, a voltage follower and a low noise amplifier. Lower cut-off frequency of the detector is adjusted at 175kHz to block AC voltage and to pass discharge pulse only. The discharge location could be obtained by the time of arrival method using travelling wave propagation theory. In a laboratory test on an eighty meter CV cable, we could position the discharge location within a two meter error.

  • PDF

Underwater Acoustic Communication Using Nonlinear Chirp Signal (비선형 chirp 신호를 이용한 수중음향통신)

  • Lee, Chang-Eun;Kim, Ki-Man;Kim, Woo-Sik;Chun, Seung-Yong;Lee, Sang-Kook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.4
    • /
    • pp.255-261
    • /
    • 2014
  • This paper presents an underwater acoustic communication with nonlinear chirp modulation. The information is carried by the carrier amplitude, frequency or phase in the most common underwater acoustic communications. However, the proposed method includes the information within frequency variation of carrier wave for a symbol. Especially, as carrier wave the hyperbolic frequency modulated signal, one of the nonlinear chirp signal, is used and it is robust in the Doppler channel. The proposed method was analyzed and compared to conventional method by simulation. When the doppler shift existed, the error probability of the proposed method is reduced by 5~12 % than conventional method with linear frequency modulated signal. Sea trial was performed to analyze the performance of the proposed method.

Reduction Method of Anisotropy Error in Two Dimensional ADI-FDTD Method (2차원 ADI-FDTD 수치해석에서 이방성 오차의 감소방안)

  • Kim, Jong-Sung;Kong, Ki-Bok
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.10
    • /
    • pp.178-184
    • /
    • 2007
  • A new adaptive alternating-direction-implicit finite-difference time-domain (ADI-FDTD) method is proposed to obtain isotropic wave propagation for all directional angles. We add the square terms of time-step multiplied by the spatial derivatives of x and y as a perturbed term to the conventional ADI-FDTD and can find the optimization coefficient of square terms of time-step to generate the minimum anisotropy. The new ADI-FDTD is also stable, even when its time-step is greater than the Courant-Friedrich-Levy (CFL) limit. The characteristic equation of the dispersion relation governing the new method is derived and compared with the theoretical and numerical results for the conventional ADI-FDTD and perturbed ADI-FDTD methods.

On the Errors of the Phased Beam Tracing Method for the Room Acoustic Analysis (실내음향 해석을 위한 위상 빔 추적법의 사용시 오차에 관하여)

  • Jeong, Cheol-Ho;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • To overcome the mid frequency limitation of geometrical acoustic techniques, the phased geometrical method was suggested by introducing the phase information into the sound propagation from the source. By virtue of phase information, the phased tracing method has a definite benefit in taking the interference phenomenon at mid frequencies into account. Still, this analysis technique has suffered from difficulties in dealing with low frequency phenomena, so called, wave nature of sound. At low frequencies, diffraction at corners, edges, and obstacles can cause errors in simulating the transfer function and the impulse response. Due to the use of real valued absorption coefficient, simulated results have shown a discrepancy with measured data. Thus, incorrect phase of the reflection characteristic of a wall should be corrected. In this work, the uniform theory of diffraction was integrated into the phased beam tracing method (PBTM) and the result was compared to the ordinary PBTM. By changing the phase of the reflection coefficient, effects of phase information were investigated. Incorporating such error compensation methods, the acoustic prediction by PBTM can be further extended to low frequency range with improved accuracy in the room acoustic field.

A Study of Broadband Propagation Characteristics for The Future Mobile Communications (II) - The Improvement of Broadband Propagation Characteristics using Polarization Diversity under Indoor Environment (차세대 이동통신에서의 광대역 전파특성 연구(II) - 편파 다이버시티를 이용한 실내에서의 광대역 전파특성 개선-)

  • 하덕호;윤영석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.1
    • /
    • pp.78-89
    • /
    • 1999
  • In this paper, to improve bandwidth amplitude fluctuation for the broadband signal in indoor propagation environment, we measured and analyzed broadband signal using a vertically polarized, horizontally polarized and circularly polarized antenna, conducting by frequency sweeping method in NLOS (Non-Line-of-Sight) environment. And, to investigate the optimum condition for the improvement of broadband propagation characteristics we also examined the effects of both human motions and transmission antenna height in the NLOS environment. As a result, in the case of NLOS environment, it was found that the amplitude deviation characteristics in frequency bandwidth can be improved by polarization diversity reception. Especially, we found that it is the best effective one to make polarization diversity reception branches, which install the circularly polarized antenna at transmitting end and install the polarized diversity branches received vertical or/and horizontal polarized wave at receiving end. The affection of a human motions is not so much in LOS and NLOS environment, but it can lead to the cause of burst error in indoor digital radio communications as the fade of signal strength become more deeper. And also, when raise the transmitting antenna up to the ceiling, the LOS and NLOS environment could be coexisted. In this case, it can be also inferred that frequency bandwidth amplitude deviation must be fundamentally improved by using polarization diversity reception technique to make the possibility of high transmission rate.

  • PDF

A Study on Ray Tracing Method for Wave Propagation Prediction with Acceleration Methods (가속 방법을 이용하는 전파 광선 추적법에 관한 연구)

  • Kwon, Se-Woong;Moon, Hyun-Wook;Oh, Jae-Rim;Lim, Jae-Woo;Bae, Seok-Hee;Kim, Young-Gyu;Park, Joung-Soo;Yoon, Young-Joong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.5
    • /
    • pp.471-479
    • /
    • 2009
  • In this paper, we proposed an improved ray tracing method with an amelioration of visible tree structure, a visible face determination method, and non-uniform random test point method. In a proposed visible tree structure, it reduces tree nodes by means of merging similar nodes. In a visible face determination method, it shows that a ray hit test with a packet ray method can reduce a test time. A ray tracing method involving with a packet ray hit test method can improve a tree construction time up to 3.3 times than a ray tracing method with a single ray hit test method. Furthermore, by seeding a non-uniform and random test point on a face, tree construction time is improved up to 1.11 times. Received powers from the proposed ray tracing results and measured results have good agreement with 1.9 dB RMS error.

The Three-Dimensional Acoustic Field Analysis using the Type C CIP Method (C형 CIP법을 이용한 3차원 음장해석)

  • Lee, Chai-Bong;Oh, Sung-Qwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.2
    • /
    • pp.125-132
    • /
    • 2010
  • The authors have investigated the acoustic field analysis using the Constrained Interpolation Profile(CIP) Method recently proposed by Yabe. This study has examined the calculation accuracy of the three-dimensional(3-D) acoustic field analysis using the type C CIP method. In this paper we show phase error of type C CIP method and the dependence on the wave-propagation direction in the type C CIP acoustic field analysis, and then demonstrate that it gives less-diffusive results than conventional analysis. Moreover, in comparison between type C-1 CIP, type C-2 CIP, type M CIP and FDTD, reports the memory requirements and calculation time of each method.

Approximation of a Warship Passive Sonar Signal Using Taylor Expansion (테일러 전개를 이용한 함정 수동 소나 신호 근사)

  • Hong, Wooyoung;Jung, Youngcheol;Lim, Jun-Seok;Seong, Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.4
    • /
    • pp.232-237
    • /
    • 2014
  • A passive sonar of warship is composed of several directional or omni-directional sensors. In order to model the acoustic signal received into a warship sonar, the wave propagation modeling is usually required from arbitrary noise source to all sensors equipped to the sonar. However, the full calculation for all sensors is time-consuming and the performance of sonar simulator deteriorates. In this study, we suggest an asymptotic method to estimate the sonar signal arrived to sensors adjacent to the reference sensor, where it is assumed that all information of eigenrays is known. This method is developed using Taylor series for the time delay of eigenray and similar to Fraunhofer and Fresnel approximation for sonar aperture. To validate the proposed method, some numerical experiments are performed for the passive sonar. The approximation when the second-order term is kept is vastly superior. In addition, the error criterion for each approximation is provided with a practical example.

Development of Fine Dust Measurement Method based on Ultrasonic Scattering (초음파 산란 기법을 적용한 미세먼지 측정법 개발)

  • Choi, Hajin;Woo, Ukyong;Hong, Jinyoung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.40-48
    • /
    • 2019
  • New concept of fine dust measurement method is suggested based on ultrasonic scattering. These days, fine dust has been social problem in Korea, and many researches has been conducted including the area structural maintenance. Conventional measurement system such as optical scattering and semiconductor has a limit from environmental factors like relative humidity. However, ultrasound is based on mechanical waves, which perturb mechanical properties of medium such as density and elastic constants. Using the advantage, the algorithm for fine dust measurement is derived and evaluated using 2-D finite difference method. The numerical analysis simulates ultrasonic wave propagation inside multiple scattering medium like fine dust in air. Signal processing scheme is also suggested and the results show that the error of the algorithm is around minimum of 0.7 and maximum of 24.9 in the number density unit. It is shown that cross-section of fine dust is a key parameter to improve the accuracy of algorithm.