• Title/Summary/Keyword: Error wave propagation method

Search Result 48, Processing Time 0.026 seconds

ODPM Channel Estimation Method using Multiple MRC and New Reliability Test in IEEE 802.11p Systems with Receive Diversity

  • Lim, Sungmook;Ryu, Gihoon;Ko, Kyunbyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4584-4599
    • /
    • 2021
  • In IEEE 802.11p-based wireless access in vehicular environments (WAVE) communication systems, channel estimation (CE) is one of the important issues to provide stable communication service. It is hard to apply conventional CE schemes based on data pilot to real systems, because error propagation occurs in high mobility and modulation order environments, resulting in degrading the CE performance. In this paper, we propose one data pilot using multiple receive antennas (ODPM) CE scheme based on the weighted sum using update matrix (WSUM) with time-domain averaging (TDA) to overcome this problem. Within the process of WSUM-TDA in the proposed scheme, the maximum ratio combining (MRC) technique is applied so as to create more accurate one data pilot. Moreover, a new reliability test criterion is proposed as the fashion of utilizing MRC, which makes it possible to apply selective TDA that guarantees performance improvement. In simulation results, the packet error rate (PER) performance of the proposed ODPM is compared with that of conventional CE methods and its superiority is demonstrated.

Impact localization method for composite structures subjected to temperature fluctuations

  • Gorgin, Rahim;Wang, Ziping
    • Smart Structures and Systems
    • /
    • v.30 no.4
    • /
    • pp.371-383
    • /
    • 2022
  • A novel impact localization method is presented based on impact induced elastic waves in sensorized composite structure subjected to temperature fluctuations. In real practices, environmental and operational conditions influence the acquired signals and consequently make the feature (particularly Time of Arrival (TOA)) extraction process, complicated and troublesome. To overcome this complication, a robust TOA estimation method is proposed based on the times in which the absolute amplitude of the signal reaches to a specific amplitude value. The presented method requires prior knowledge about the normalized wave velocity in different directions of propagation. To this aim, a finite element model of the plate was built in ABAQUS/CAE. The impact location is then highlighted by calculating an error value at different points of the structure. The efficiency of the developed impact localization technique is experimentally evaluated by dropping steel balls with different energies on a carbon fiber composite plate with different temperatures. It is demonstrated that the developed technique is able to localize impacts with different energies even in the presence of noise and temperature fluctuations.

A Finite Element Based PML Method for Time-domain Electromagnetic Wave Propagation Analysis (시간영역 전자기파 전파해석을 위한 유한요소기반 PML 기법)

  • Yi, Sang-Ri;Kim, Boyoung;Kang, Jun Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.123-130
    • /
    • 2015
  • This paper presents a new formulation for transient simulations of microwave propagation in heterogeneous unbounded domains. In particular, perfectly-matched-layers(PMLs) are introduced to allow for wave absorption at artificial boundaries used to truncate the infinite extent of the physical domains. The development of the electromagnetic PML targets the application to engineering mechanics problems such as structural health monitoring and inverse medium problems. To formulate the PML for plane electromagnetic waves, a complex coordinate transformation is introduced to Maxwell's equations in the frequency-domain. Then the PML-endowed partial differential equations(PDEs) for transient electromagnetic waves are recovered by the application of the inverse Fourier transform to the frequency-domain equations. A mixed finite element method is employed to solve the time-domain PDEs for electric and magnetic fields in the PML-truncated domain. Numerical results are presented for plane microwaves propagating through concrete structures, and the accuracy of solutions is investigated by a series of error analyses.

Analysis of the characteristics of open microstrip using the 3D-PML method at the FDTD (유한차분 시간영역 해석법에 3차원 완전 접합층을 적용한 개방형 마이크로스트립의 특성 해석)

  • 윤성현;정수길;손창수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.4
    • /
    • pp.846-856
    • /
    • 1998
  • In this paper, we have applied Berenger's perfectly matched layer(PML) absorbing boundary conditition(ABC) with three dimension at the propagation direction of field, side boundary and upper boundary in which evanescent and radiation field is exist. Even though the same computationaal domain is used, PML is superior to other ABC in the absorbing ability that is obtained reflective coefficient about $10^{-4}$ unit for the propagation wave, but PML is ineffective in absorbing evanescent field. Also we have compared dispersive characteristics of the microstrip with Kobayashi's emprical method, and obtaind very similar result, but 0.8% error is generated at the dc or near.

  • PDF

Improvement Performance of Inter-Vehicle Communication System in Millimeter Wave RF Channels (밀리미터파 무선통신로에서 차량간 통신 시스템의 성능개선)

  • Kim, Choon-Gu;Kang, Heau-Jo;Choi, Yong-Suk
    • Journal of Advanced Navigation Technology
    • /
    • v.5 no.2
    • /
    • pp.158-164
    • /
    • 2001
  • We presented a channel model for the inter vehicle radio link including the reflection from the road surface, side road vehicle and concrete wall. Then we theoretically derived the path loss and delay profile characteristics using the Ray tracing method efficiently analyzing millimeter wave or optic wave. Finally, we shown the improvement of propagation characteristics by diversity techniques, BCH coding and convolution coding techniques. At the result, MRC diversity techniques and BCH coding can't obtained PER = $10^{-6}$ which is considered to be data service criterion. But, we knew that Packet Error Rate Characteristic can obtained PER = $10^{-6}$, which is considered to be data service criterion, when convolution coding scheme are adopted in Rician fading.

  • PDF

Measurement of Soil Water Content by Time Domain Reflectometry (TDR(Time Domain Reflectometry)을 이용한 토양함수량의 측정)

  • Park, Jae-Hyeon;Yun, Seong-Yong;Kim, Sang-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.587-595
    • /
    • 1997
  • Experimental study on unsaturated flow in the soil is important to understand the characteristics of the water flow. Measurement of unsteady-state water movement using the traditional equipment (e.g. tensiometer) has a problem that requires relatively a long response time. In this study a quick measurement method of soil water flow using TDR is introduced. TDR consists of an electronic function generator which generates a squared wave, and an oscilloscope which catches the reflected wave. The wave is reflected where both the impedance of the transmission line and the propagation velocity are changed. The water content can be obtained from the travel time measured by means of TDR because the dielectric constant is affected by the change of soil water content. From the result of TDR calibration. TDR measurement error for the oven dried soil was found to be less than 3.5%. This supports that TDR is a viable technique to measure the unsteady-state water movement.

  • PDF

Adaptive Active Noise Control of Single Sensor Method (단일 센서 방식의 적응 능동 소음제어)

  • 김영달;장석구
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.941-948
    • /
    • 2000
  • Active noise control is an approach to reduce the noise by utilizing a secondary noise source that destructively interferes with the unwanted noise. In general, active noise control systems rely on multiple sensors to measure the unwanted noise field and the effect of the cancellation. This paper develops an approach that utilizes a single sensor. The noise field is modeled as a stochastic process, and an adaptive algorithm is used to adaptively estimate the parameters of the process. Based on these parameter estimates, a canceling signal is generated. Oppenheim assumed that transfer function characteristics from the canceling source to the error sensor is only a propagation delay. This paper proposes a modified Oppenheim algorithm by considering transfer characteristics of speaker-path-sensor This transfer characteristics is adaptively cancelled by the proposed adaptive modeling technique. Feasibility of the proposed method is proved by computer simulations with artificially generated random noises and sine wave noise. The details of the proposed architecture. and theoretical simulation of the noise cancellation system for three dimension enclosure are presented in the Paper.

  • PDF

Integrated equations of motion for direct integration methods

  • Chang, Shuenn-Yih
    • Structural Engineering and Mechanics
    • /
    • v.13 no.5
    • /
    • pp.569-589
    • /
    • 2002
  • In performing the dynamic analysis, the step size used in a step-by-step integration method might be much smaller than that required by the accuracy consideration in order to capture the rapid chances of dynamic loading or to eliminate the linearization errors. It was first found by Chen and Robinson that these difficulties might be overcome by integrating the equations of motion with respect to time once. A further study of this technique is conducted herein. This include the theoretical evaluation and comparison of the capability to capture the rapid changes of dynamic loading if using the constant average acceleration method and its integral form and the exploration of the superiority of the time integration to reduce the linearization error. In addition, its advantage in the solution of the impact problems or the wave propagation problems is also numerically demonstrated. It seems that this time integration technique can be applicable to all the currently available direct integration methods.

Stochastic ground-motion evaluation of the offshore Uljin Earthquake (울진앞바다 지진( '04. 5. 29, M=5.2)의 추계학적 지진동 평가)

  • Yun, Kwan-Hee;Park, Dong-Hee;Choi, Weon-Hack;Chang, Chun-Jung
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.18-25
    • /
    • 2005
  • Stochastic ground-motion method is adopted to simulate horizontal PGA values for the offshore Uljin earthquake recorded at nationwide seismic stations. For this purpose, the Fourier spectra are calculated at every stations based on comprehensive results of wave propagation and site effect which were previously revealed through inversion process applied to large accumulated spectral D/B. In addition, the apparent source spectrum of the offshore Uljin earthquake is estimated by removing the path and site response from the observed spectra. The distance dependent time-duration model is revised by iteratively fitting the PGA values generated by using the raw spectra data to the observed PGA data. The stochastic ground-motion method predicts the observed PGA values within a error of ${\sigma}_{log10}=0.1$. Transfer functions of a site relative to another site are estimated based on the error residual of the inversion results and used to convert PGA values at multiple stations to expected PGA values at a reference station of TJN. The converted PGA values can be used as basic data to evaluate the ground-motion attenuation relations developed for seismic hazard analysis that concerns the large damaging earthquakes.

  • PDF

Transmission Line Parameter Extraction and Signal Integrity Verification of VLSI Interconnects Under Silicon Substrate Effect (실리콘 기판 효과를 고려한 VLSI 인터컨넥트의 전송선 파라미터 추출 및 시그널 인테그러티 검증)

  • 유한종;어영선
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.3
    • /
    • pp.26-34
    • /
    • 1999
  • A new silicon-based IC interconnect transmission line parameter extraction methodology is presented and experimentally examined. Unlike the PCB or MCM interconnects, a dominant energy propagation mode in the silicon-based IC interconnects is not quasi-TEM but slow wave mode(SWM). The transmission line parameters are extracted taking the silicon substrate effect (i.e., slow wave mode) into account. The capacitances are calculated considering silicon substrate surface as a ground. Whereas the inductances are calculated by using an effective dielectric constant. In order to verify the proposed method, test patterns were designed. Experimental data have agreement within 10%. Further, crosstalk noise simulation shows excellent agreements with the measurements which are performed with high-speed time domain measurement ( i.e., TDR/TDT measurements) for test pattern, while RC model or RLC model without silicon substrate effect show about 20~25% underestimation error.

  • PDF