In this paper, Active Noise Control(ANC) algorithm is proposed based on the estimated frequency estimator of the reference signal. The conventional feedforward ANC algorithms should measure the reference and use it to calculate the gradient of the squared error and filter coefficients. For ANC systems applied to aircrafts and passenger ships, engines from which reference signal is usually measured is so far from seats where main part of controller is placed that the scheme might be difficult to implement or very costly. Feedback ANC algorithm which doesn't need to measure the reference uses the error signal to update the filter and is sensitive to unexpected transient noise like a sneeze, clapping of hands and so on The proposed algorithm estimates frequencies of the desired signal in real time using adaptive notch filter. New frequency estimation algorithm is proposed with the improved convergence rate, threshold SNR and computational simplicity. Reference is not measured but created with the estimated frequencies. It has strong similarity to the conventional feedback control because reference is made from error signal. Enhanced error signal is used to update the controller for better performance under the measurement noise and impact noise. The proposed ANC algorithm is compared with the conventional feedback control.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.5
no.4
/
pp.649-664
/
2011
Cooperative spectrum sensing (CSS) with decision fusion is considered as a key technology for tackling the challenges caused by fading/shadowing effects and noise uncertainty in spectrum sensing in cognitive radio. However, most existing solutions assume an error-free decision transmission, which is obviously not the case in realistic scenarios. This paper extends the general decision-fusion-based CSS scheme by considering the fading/shadowing effects and noise corruption in the common control channels. With this more practical model, the fusion centre first estimates the local decisions using a binary minimum error probability detector, and then combines them to get the final result. Theoretical analysis and simulation of this CSS scheme are performed over typical channels, which suggest some performance deterioration compared with the pure case that assumes an error-free decision transmission. Furthermore, the fusion strategy optimization in the proposed cooperation model is also investigated using the Bayesian criteria. The numerical results show that the total error rate of noisy CSS is higher than that of the pure case, and the optimal values of fusion parameter in the counting rule under both cases decrease as the local detection threshold increases.
Halftoning of gray-scale image is a process to produce a binary image. The error diffusion halftoning method produces high qualify binary image but that has some defects such as sharpening and directional artifacts. We propose the threshold modulation to reduce such defects. The proposed algorithm uses thresholds reflecting local characteristic of image. We calculate thresholds which minimize errors of flat region of each gray-scale level by using a linear gain between original image and error-diffused image and then represent edge by compensating thresholds in proportion to edge information. The proposed method improves on halftone quality by minimizing an error which cause sharpening and directional artifact.
Recently there have been many research efforts focused on imbalanced data classification problems, since they are pervasive but hard to be solved. Approaches to the imbalanced data problems can be categorized into data level approach using re-sampling, algorithmic level one using cost functions, and ensembles of basic classifiers for performance improvement. As an algorithmic level approach, this paper proposes to use multilayer perceptrons with higher-order error functions. The error functions intensify the training of minority class patterns and weaken the training of majority class patterns. Mammography and thyroid data-sets are used to verify the superiority of the proposed method over the other methods such as mean-squared error, two-phase, and threshold moving methods.
This research is a comprehensive analysis of wind power prediction sensitivity using a Long Short-Term Memory (LSTM) deep learning neural network model, accounting for the inherent uncertainties in wind speed estimation. Utilizing a year's worth of operational data from an operational wind farm, the study forecasts the power output of both individual wind turbines and the farm collectively. Predictions were made daily at intervals of 10 minutes and 1 hour over a span of three months. The model's forecast accuracy was evaluated by comparing the root mean square error (RMSE), normalized RMSE (NRMSE), and correlation coefficients with actual power output data. Moreover, the research investigated how inaccuracies in wind speed inputs affect the power prediction sensitivity of the model. By simulating wind speed errors within a normal distribution range of 1% to 15%, the study analyzed their influence on the accuracy of power predictions. This investigation provided insights into the required wind speed prediction error rate to achieve an 8% power prediction error threshold, meeting the incentive standards for forecasting systems in renewable energy generation.
Journal of the Institute of Electronics Engineers of Korea SD
/
v.41
no.9
/
pp.39-48
/
2004
Turbo codes, whose performance in bit error rate is close to the Shannon limit, have been adopted as a part of standard for the third-generation high-speed wireless data services. Iterative Turbo decoding results in decoding delay and high power consumption. As wireless communication systems can only use limited power supply, low power design techniques are essential for mobile device implementation. This paper proposes new effective criteria for stopping the iteration process in turbo decoding to reduce power consumption. By setting two stopping criteria, decodable threshold and undecodable threshold, we can effectively reduce the number of decoding iterations with only negligible error-correcting performance degradation. Simulation results show that the number of unsuccessful error-correction can be reduced by 89% and the number of decoding iterations can be reduced by 29% on the average among 12500 simulations when compared with those of an existing typical method.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.37
no.4
/
pp.1-10
/
2000
The error diffusion technique is frequently utilized for the digital Imaging output devices to convert continuous level Image into bi-level Image It Yields the binary image with the high frequency emphasis that gives a pleasing perception to human eyes But, due to the non-homogeneous distribution of dots, It exhibits undesirable patterns that degenerate the perceived quality Various techniques have been proposed to Improve the Image quality by the error diffusion techniques In this paper, the cause of non-homogeneity of dot distribution is analyzed first. A threshold modulation technique that employs a simple sinusoidal function is proposed in this paper The proposed method achieves the homogeneous dot distribution by forcing the minor pixels on the binary Image to maintain the principal distance defined according to their gray levels. It also minimizes the void and clusters of minor pixels.
The Journal of Korean Institute of Communications and Information Sciences
/
v.35
no.7C
/
pp.618-627
/
2010
In this paper, we propose an adaptive K-best algorithm in which the number K of candidates is changed according to the differences of level radii. We also compare the bit error performance and complexity of the proposed algorithm with those of several conventional K-best algorithms, where the complexity is defined as the total number of candidates of which partial Euclidean distances have to be calculated. The proposed algorithm adaptively decides K at each level by eliminating the symbols, whose differences of radii are larger than a threshold, from the set of candidates, and the maximum or average value of differences can be adopted as the threshold. The proposed decoding algorithm shows the better bit error performance and the lower complexity than a conventional K-best decoding algorithm with a constant K, and also has a similar bit error performance and the lower complexity than other adaptive K-best algorithms.
We develop a complete system that includes data collection, signal processing, and real-time interaction for effective neurofeedback training. Our system supports a sophisticated technique to find threshold values which are quite important for effective neurofeedback system. A therapist specifies a target success rate of positive feedback, allowable error and time. The system computes a current success rate and compare it with the target one. If the difference between two rates exceeds the allowable error for allowable time, we find an optimum threshold value to obtain the target success rate by using numerical optimization technique. We conduct several experiments by varying input parameters: target success rate, allowable error and time, and demonstrate the effectiveness of our technique by showing the desired target success rate is stably obtained and systematically controlled by input parameters.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.39
no.3
/
pp.42-48
/
2002
Multiple description coding Is source coding for multiple channels such that a decoder which receives an arbitrary subset of the channels may produce a useful reconstruction. This paper presents an efficient multiple description coder using a newly designed EZW coding method. We first propose EZW coder which has expanded threshold and two subordinate passes. And then we present multiple description coder which has two coding channels using the proposed EZW coders. To evaluate the performance of the proposed coder, we provide an image coding applications with two descriptions and compare multiple description image coding results reported to date. Simulation results show that the proposed method has a better performance than the polyphase transform method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.