• Title/Summary/Keyword: Error synthesis model

Search Result 84, Processing Time 0.03 seconds

Modeling for the Automation of Start-up Operation in Boiler Plant (보일러 플랜트의 Start-Up 운전자동화를 위한 모델링)

  • 윤영진;황규석
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.1
    • /
    • pp.60-70
    • /
    • 1997
  • Since, human error is a major factor contributing to disaster during start-up of operation in Boiler plant. it is necessary to develop an automation system which prevent mode of operation that are known to be dangerous and to bring a loss of energy. The aim of this study is to suggest a model for the computer-aided synthesis of operation sequence as a part of automation system for start-up operation. Synthesis is accomplished by the formation of a hierarchical network of goals which decide sequence of operations. Hierarchical Network is formed by using method which upper goals ( i.e. upper operation al situation) are classified by the function of themselves into lower goals (i.e. lower operational situation). Knowledge for deciding operation sequence is generated by putting In order the knowledge of hazard operation and energy management.

  • PDF

Analytical Sensitivity Analysis of Geometric Errors in a Three-Axis Machine Tool (해석적 방법을 통한 3 축 공작기계의 기하학적 오차 민감도 분석)

  • Park, Sung-Ryung;Yang, Seung-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.165-171
    • /
    • 2012
  • In this paper, an analytical method is used to perform a sensitivity analysis of geometric errors in a three-axis machine tool. First, an error synthesis model is constructed for evaluating the position volumetric error due to the geometric errors, and then an output variable is defined, such as the magnitude of the position volumetric error. Next, the global sensitivity analysis is executed using an analytical method. Finally, the sensitivity indices are calculated using the quantitative values of the geometric errors.

Discrete Event Model Conversion Algorithm for Systematic Analysis of Ladder Diagrams in PLCs (PLC 래더다이어그램의 체계적인 분석을 위한 이산사건모델 변환 알고리즘)

  • Kang, Bong-Suk;Cho, Kwang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.5
    • /
    • pp.401-406
    • /
    • 2002
  • As product lifecycles become shorter, factories are pushed to develop small batches of many different products. The highly flexible control systems has become a necessity. The majority of existing automated industrial systems are controlled by programmable logic controllers(PLCs). In most cases, the control programs for PLCs are developed based on ladder diagrams(LDs). However, it is difficult to debug and maintain those LDs because the synthesis of LD itself mainly depends on the experience of the industrial engineer via trial-and-error methods. Hence, in this paper, we propose a discrete event model conversion algorithm for systematic analysis of LDs. The proposed discrete event model conversion algorithm is illustrated by an example of a conveyor system.

The Automatical Process Map Generation Using Network Representation In Radiopharmaceutical Synthesis (네트워크 모델링을 통한 방사성의약품 합성 프로세스 맵 자동생성 시스템)

  • Lee, Cheol-Soo;Heo, Eun-Young;Kim, Jong-Min;Kim, Dong-Soo
    • IE interfaces
    • /
    • v.24 no.2
    • /
    • pp.156-163
    • /
    • 2011
  • The radiopharmaceutical synthesis for PET (positron emission tomography) is composed of chemical reactions using automated synthetical equipment. Due to the radioactive material, the automated equipment is being frequently developed to replace human operators who conduct dangerous, repetitive and dexterous operations. As to operation, the manipulating program is commonly coded using the spread sheet while the whole actuators are mapped in every step. The process map (program) is changed according to such parameters as temperature of reactor, keeping time, mixture sequence and amount of reagent. In cases of customizing the automated synthetical equipment or developing the new radiopharmaceuticals, lots of experiments should be conducted and the programming mistake is not allowed as it can lead abnormal control of the equipment to leak the radioactive materials. The exact process map has depended on trial and error manner. Thus, this study developed the methodology to tabulate the synthetical process to convert the process map automatically while the synthetical module formation is represented by a network model. The proposed method is validated using the actual radiopharmaceutical synthetical procedure.

Automatic Estimation of 2D Facial Muscle Parameter Using Neural Network (신경회로망을 이용한 2D 얼굴근육 파라메터의 자동인식)

  • 김동수;남기환;한준희;배철수;권오흥;나상동
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.1029-1032
    • /
    • 1999
  • Muscle based face image synthesis is one of the most realistic approach to realize life-like agent in computer. Facial muscle model is composed of facial tissue elements and muscles. In this model, forces are calculated effecting facial tissue element by contraction of each muscle strength, so the combination of each muscle parameter decide a specific facial expression. Now each muscle parameter is decided on trial and error procedure comparing the sample photograph and generated image using our Muscle-Editor to generate a specific face image. In this paper, we propose the strategy of automatic estimation of facial muscle parameters from 2D marker movement using neural network. This also 3D motion estimation from 2D point or flow information in captered image under restriction of physics based face model.

  • PDF

A Design Method of QFT with Improved Loop Shaping Approach using GA (GA를 이용한 개선된 루프 형성법을 갖는 QFT 설계방법)

  • Kim, Ju-Sik;Lee, Sang-Hyuk;Ryu, Jeong-Woong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.8
    • /
    • pp.972-979
    • /
    • 1999
  • QFT(Quantitative Feedback Theory) is a very practical design technique that emphasizes the use of feedback for achieving the desired system performance tolerances in despite of plant uncertainty and disturbance. The fundamental concept of QFT is a loop shaping procedure that a suitable controller can be found by shaping a nominal loop transfer function. The loop shaping synthesis involves the identification of a structure and the specialization of parameter optimization of a desired system. This paper presents an improved loop shaping approach of QFT with model validation using GA(Genetic Algorithm). The method presented in this paper removes the problems of iterative operation, transformation error, and model validation in the conventional methods without consideration of frequency domain.

  • PDF

Henry gas solubility optimization for control of a nuclear reactor: A case study

  • Mousakazemi, Seyed Mohammad Hossein
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.940-947
    • /
    • 2022
  • Meta-heuristic algorithms have found their place in optimization problems. Henry gas solubility optimization (HGSO) is one of the newest population-based algorithms. This algorithm is inspired by Henry's law of physics. To evaluate the performance of a new algorithm, it must be used in various problems. On the other hand, the optimization of the proportional-integral-derivative (PID) gains for load-following of a nuclear power plant (NPP) is a good challenge to assess the performance of HGSO. Accordingly, the power control of a pressurized water reactor (PWR) is targeted, based on the point kinetics model with six groups of delayed-neutron precursors. In any optimization problem based on meta-heuristic algorithms, an efficient objective function is required. Therefore, the integral of the time-weighted square error (ITSE) performance index is utilized as the objective (cost) function of HGSO, which is constrained by a stability criterion in steady-state operations. A Lyapunov approach guarantees this stability. The results show that this method provides superior results compared to an empirically tuned PID controller with the least error. It also achieves good accuracy compared to an established GA-tuned PID controller.

VLSI Implementation of Forward Error Control Technique for ATM Networks

  • Padmavathi, G.;Amutha, R.;Srivatsa, S.K.
    • ETRI Journal
    • /
    • v.27 no.6
    • /
    • pp.691-696
    • /
    • 2005
  • In asynchronous transfer mode (ATM) networks, fixed length cells of 53 bytes are transmitted. A cell may be discarded during transmission due to buffer overflow or a detection of errors. Cell discarding seriously degrades transmission quality. The quality degradation can be reduced by employing efficient forward error control (FEC) to recover discarded cells. In this paper, we present the design and implementation of decoding equipment for FEC in ATM networks based on a single parity check (SPC) product code using very-large-scale integration (VLSI) technology. FEC allows the destination to reconstruct missing data cells by using redundant parity cells that the source adds to each block of data cells. The functionality of the design has been tested using the Model Sim 5.7cXE Simulation Package. The design has been implemented for a $5{\times}5$ matrix of data cells in a Virtex-E XCV 3200E FG1156 device. The simulation and synthesis results show that the decoding function can be completed in 81 clock cycles with an optimum clock of 56.8 MHz. A test bench was written to study the performance of the decoder, and the results are presented.

  • PDF

A phase synthesis time reversal impact imaging method for on-line composite structure monitoring

  • Qiu, Lei;Yuan, Shenfang
    • Smart Structures and Systems
    • /
    • v.8 no.3
    • /
    • pp.303-320
    • /
    • 2011
  • Comparing to active damage monitoring, impact localization on composite by using time reversal focusing method has several difficulties. First, the transfer function of the actuator-sensor path is difficult to be obtained because of the limitation that no impact experiment is permitted to perform on the real structure and the difficulty to model it because the performance of real aircraft composite is much more complicated comparing to metal structure. Second, the position of impact is unknown and can not be controlled as the excitation signal used in the active monitoring. This makes it not applicable to compare the difference between the excitation and the focused signal. Another difficulty is that impact signal is frequency broadband, giving rise to the difficulty to process virtual synthesis because of the highly dispersion nature of frequency broadband Lamb wave in plate-like structure. Aiming at developing a practical method for on-line localization of impact on aircraft composite structure which can take advantage of time reversal focusing and does not rely on the transfer function, a PZT sensor array based phase synthesis time reversal impact imaging method is proposed. The complex Shannon wavelet transform is presented to extract the frequency narrow-band signals from the impact responded signals of PZT sensors. A phase synthesis process of the frequency narrow-band signals is implemented to search the time reversal focusing position on the structure which represents the impact position. Evaluation experiments on a carbon fiber composite structure show that the proposed method realizes the impact imaging and localization with an error less than 1.5 cm. Discussion of the influence of velocity errors and measurement noise is also given in detail.

Synthesis of Deadlock-Free Ladder Diagrams for PLCs Based on Deadlock Detection and.Recovery (DDR) Algorithm (DDR 알고리즘에 기반한 교착상태배제 래더 다이어그램 설계)

  • Cha, Jong-Ho;Cho, Kwang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.8
    • /
    • pp.706-712
    • /
    • 2002
  • In general, a deadlock in flexible manufacturing systems (FMSs) is caused by a resource limitation and the diversity of routings. However, the deadlock of industrial controllers such as programmable logic controllers (PLCs) can occur from different causes compared with those in general FMSs. The deadlock of PLCs is usually caused by an error signal between PLCs and manufacturing systems. In this paper, we propose a deadlock detection and recovery (DDR) algorithm to resolve the deadlock problem of PLCs at design stage. This paper employs the MAPN (modified automation Petri net), MTPL (modified token passing logic), and ECC (efficient code conversion) algorithm to model manufacturing systems and to convert a Petri net model into a desired LD (ladder diagram). Finally, an example of manufacturing systems is provided to illustrate the proposed DDR algorithm.