• Title/Summary/Keyword: Error reduction

Search Result 1,415, Processing Time 0.026 seconds

Quantitative Analysis of Random Errors of the WRF-FLEXPART Model for Backward-in-time Simulation over the Seoul Metropolitan Area (수도권 영역의 시간 후방 모드 WRF-FLEXPART 모의를 위한 입자 수에 따른 무작위 오차의 정량 분석)

  • Woo, Ju-Wan;Lee, Jae-Hyeong;Lee, Sang-Hyun
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.551-566
    • /
    • 2019
  • Quantitative understanding of a random error that is associated with Lagrangian particle dispersion modeling is a prerequisite for backward-in-time mode simulations. This study aims to quantify the random error of the WRF-FLEXPART model and suggest an optimum number of the Lagrangian particles for backward-in-time simulations over the Seoul metropolitan area. A series of backward-in-time simulations of the WRF-FLEXPART model has conducted at two receptor points by changing the number of Lagrangian particles and the relative error, as a quantitative indicator of random error, is analyzed to determine the optimum number of the release particles. The results show that in the Seoul metropolitan area a 1-day Lagrangian transport contributes 80~90% in residence time and ~100% in atmospheric enhancement of carbon monoxide. The relative errors in both the residence time and the atmospheric concentration enhancement are larger when the particles release in the daytime than in the nighttime, and in the inland area than in the coastal area. The sensitivity simulations reveal that the relative errors decrease with increasing the number of Lagrangian particles. The use of small number of Lagrangian particles caused significant random errors, which is attributed to the random number sampling process. For the particle number of 6000, the relative error in the atmospheric concentration enhancement is estimated as -6% ± 10% with reduction of computational time to 21% ± 7% on average. This study emphasizes the importance of quantitative analyses of the random errors in interpreting backward-in-time simulations of the WRF-FLEXPART model and in determining the number of Lagrangian particles as well.

A Low Power ECC H-matrix Optimization Method using an Ant Colony Optimization (ACO를 이용한 저전력 ECC H-매트릭스 최적화 방안)

  • Lee, Dae-Yeal;Yang, Myung-Hoon;Kim, Yong-Joon;Park, Young-Kyu;Yoon, Hyun-Jun;Kang, Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.1
    • /
    • pp.43-49
    • /
    • 2008
  • In this paper, a method using the Ant Colony Optimization(ACO) is proposed for reducing the power consumption of memory ECC checker circuitry which provide Single-Error Correcting and Double-Error Detecting(SEC-DED). The H-matrix which is used to generate SEC-DED codes is optimized to provide the minimum switching activity with little to no impact on area or delay using the symmetric property and degrees of freedom in constructing H-matrix of Hsiao codes. Experiments demonstrate that the proposed method can provide further reduction of power consumption compared with the previous works.

Design and Implementation of a Linearizer Using the Feedforward Loop without Delay Lines (지연 선로가 없는 Feedforward Loop를 이용한 선형화기의 설계 및 제작)

  • 정승환;조경준;김완종;안창엽;김종헌
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.1
    • /
    • pp.116-123
    • /
    • 2000
  • This paper presents a linearizer using the feedforward loop which can be applied to PCS base-station applications. This linearizer used a IM amplifier and an auxiliary amplifier in order to remove delay lines used in the predistortor using the feedforward technique. The delay line in error loop is changed by the main power amplifier(PA) and the error amplifier is utilized to amplify the error signal which fed to the output of main amplifier. The linearizer was simulated by HP ADS ver 1.1 and fabricated on GML 1000 with thickness of 0.8 mm and dielectric constant of 3.2. Two-tone signals at 1.85 GHz and 1.851 GHz with -7dBm/tone from synthesizers are injected into the main PA. The main PA with a 27 dB gain and a $P_{1dB}$ of 29 dBm(two-tone) was utilized. The reduction of intermodulation distortion (IMD) is around 17 dB.

  • PDF

A Study on Efficient UWB Positioning Error Compensation Technique (효율적인 UWB 무선 측위 오차 보상 기법에 관한 연구)

  • Park, Jae-Wook;Bae, Seung-Chun;Lee, Soon-Woo;Kang, Ji-Myung;Lee, Won-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10A
    • /
    • pp.727-735
    • /
    • 2009
  • To alleviate positioning error using wireless ultra-wideband (UWB) is primary concern, and it has been studied how to reduce the positioning error effectively. Thanks to many repeated transmissions of UWB signals, we can have a variety of selections to point out the most precise positioning result. Towards this, scanning method has been preferred to be used due to its simplicity. This exhaustive method firstly fixes the candidate position, and calculates the sum of distances from observed positions. However, it has tremendous number of computations, and the complexity is more serious if the size of two-dimensional range is the larger. To mitigate the large number of computations, this paper proposes the technique employing genetic algorithm and block windowing. To exploit its superiority, simulations will be conducted to show the reduction of complexity, and the efficiency on positioning capability.

A Study on Effects of Offset Error during Phase Angle Detection in Grid-tied Single-phase Inverters based on SRF-PLL (SRF-PLL을 이용한 계통연계형 단상 인버터의 전원 위상각 검출시 옵셋 오차 영향에 관한 연구)

  • Kwon, Young;Seong, Ui-Seok;Hwang, Seon-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.10
    • /
    • pp.73-82
    • /
    • 2015
  • This paper proposes an ripple reduction algorithm and analyzes the effects of offset and scale errors generated by voltage sensor while measuring grid voltage in grid-tied single-phase inverters. Generally, the grid-connected inverter needs to detect the phase angle information by measuring grid voltage for synchronization, so that the single-phase inverter can be accurately driven based on estimated phase angle information. However, offset and scale errors are inevitably generated owing to the non-linear characteristics of voltage sensor and these errors affect that the phase angle includes 1st harmonic component under using SRF-PLL(Synchronous Reference Frame - Phase Locked Loop) system for detecting grid phase angle. Also, the performance of the overall system is degraded from the distorted phase angle including the specific harmonic component. As a result, in this paper, offset and scale error due to the voltage sensor in single-phase grid connected inverter under SRF-PLL is analyzed in detail and proportional resonant controller is used to reduce the ripples caused by the offset error. Especially, the integrator output of PI(Proportional Integral) controller in SRF-PLL is selected as an input signal of the proportional resonant controller. Simulation and experiment are performed to verify the effectiveness of the proposed algorithm.

A Study on the Influence of Construction Safety Education on Unstable Behavior (건설안전교육이 불안전한 행동에 미치는 영향에 관한 연구)

  • Kim, Young Kweon;Park, Jong Young;Kim, Sung Eun
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.1
    • /
    • pp.154-164
    • /
    • 2021
  • Purpose: Ten years after basic safety and health education in the construction industry has been implemented, no more maintenance education has been provided, and those who have completed basic safety and health education are exempt from new employee education. As soon as possible, we will seek strategic measures to prevent unstable behavior and prevent safety accidents by legislating conservative education and new recruitment education. Method: In this study, basic safety and health education, which is construction safety education, and human error, which is unstable behavior of new employees, and structural relationship between violation behavior were conducted through survey. Result: The survey analyzed that basic safety and health education in the construction industry and new recruitment education had a significant impact on the human factors of the disaster, Human Error, and the reduction of violations, and confirmed that continuous safety education could increase safety awareness. Conclusion: The insolvency of safety education shall be prevented by the revision of the Act on the remuneration of basic safety and health education and the education of new employees.

Quantification of Uncertainty Associated with Soil Sampling and Its Reduction Approaches (토양오염도 평가시 시료채취 불확실성 정량화 및 저감방안)

  • Kim, Geonha
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.1
    • /
    • pp.94-101
    • /
    • 2013
  • It is well known that uncertainty associated with soil sampling is bigger than that with analysis. In this research, uncertainties for soil sampling when assessing TPH and BTEX concentration in soils were quantified based on actual field data. It is almost impossible to assess exact contamination of the site regardless how carefully devised for sampling. Uncertainties associated with sample reduction for further chemical analysis were quantified approximately 10 times larger than those associated with core sampling on site. Bigger uncertainties occur when contamination level is low, sample quantity is small, and soil particle is coarse. To minimize the uncertainties on field, homogenization of soil sample is necessary and its procedures are proposed in this research as well.

Peak-to-Average Power Ratio Reduction Using N-tuple Selective Mapping Method for MC-CDMA

  • Ali, Sajjad;Chen, Zhe;Yin, Fuliang
    • ETRI Journal
    • /
    • v.37 no.2
    • /
    • pp.338-347
    • /
    • 2015
  • The multi-carrier transmission signal in Multi-Carrier Code Division Multiple Access (MC-CDMA) has a high peak-to-average power ratio (PAPR), which results in nonlinear distortion and deteriorative system performance. An n-tuple selective mapping method is proposed to reduce the PAPR, in this paper. This method generates $2^n$ sequences of an original data sequence by adding n-tuple of n PAPR control bits to it followed by an interleaver and error-control code (ECC) to reduce its PAPR. The convolutional, Golay, and Hamming codes are used as ECCs in the proposed scheme. The proposed method uses different numbers of the n PAPR control bits to accomplish a noteworthy PAPR reduction and also avoids the need for a side-information transmission. The simulation results authenticate the effectiveness of the proposed method.

A Study of Jitter Reduction for SDH Transmission System using Sigma-Delta Modulation

  • Han, Wook;Chang, Jin-Hyeon;Kim, Yung-Kwon
    • Journal of IKEEE
    • /
    • v.3 no.1 s.4
    • /
    • pp.126-132
    • /
    • 1999
  • The SDH (Synchronous Digital Hierarchy) has been rapidly acknowledged as a world wide transmission standard replacing the existing PDH infrastructure. A bit stuffing is used for synchronization between a PDH signal and a SDH node, and a pointer justification is used for synchronization between one SDH node and the other SDH node. During above processes - a bit stuffing and a pointer processing -, a stuffing jitter and a pointer Jitter are produced and the generated jitter can cause transmission error. In this study, a stuffing jitter and a pointer jitter are modeled and analyzed. A Sigma-Delta modulation is described and an advanced jitter reduction technique using a Sigma-Delta modulation technique in the Synchronizer, Pointer Processor and Desynchronizer is provided.

  • PDF

A Simplification of Linear System via Frequency Transfer Function Synthesis (주파수 전달함수 합성법에 의한 선형시스템의 간소화)

  • 김주식;김종근;유정웅
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.1
    • /
    • pp.16-21
    • /
    • 2004
  • This paper presents an approximation method for simplifying a high-order transfer function to a low-order transfer function. A model reduction is based on minimizing the error function weighted by the numerator polynomial of reduced systems. The proposed methods provide better low frequency fit and a computer aided algorithm that estimates the coefficients vector for the numerator and denominator polynomial on the simplified systems from an overdetermined linear system constructed by frequency responses of the original systems. Two examples are given to illustrate the feasibilities of the suggested schemes.