• 제목/요약/키워드: Error of Convergence

검색결과 1,952건 처리시간 0.031초

Sliding Mode Control with Finite Time Error Convergence

  • Park, Kang-Bak;Teruo Tsuji;Tsuyoshi Hanamoto
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.96-99
    • /
    • 1999
  • In this paper, a sliding node controller guaranteeing finite time error convergence is proposed jot uncertain systems. By using a novel sliding hyperplane, it is guaranteed that the output tracking error converges to zero in finite time.

  • PDF

A NOTE ON THE PAPER ENTITLED SIXTEENTH-ORDER METHOD FOR NONLINEAR EQUATIONS

  • Kim, Young Ik
    • 충청수학회지
    • /
    • 제25권2호
    • /
    • pp.359-365
    • /
    • 2012
  • The purpose of this paper is to provide some corrections regarding algebraic flaws encountered in the paper entitled "Sixteenth-order method for nonlinear equations" which was published in January of 2010 by Li et al.[9]. Further detailed comments on their error equation are stated together with convergence analysis as well as high-precision numerical experiments.

초기 오차에 강인한 반복 학습제어 알고리즘에 관한 연구 ((Study on an Iterative Learning Control Algorithm robust to the Initialization Error))

  • 허경무;원광호
    • 전자공학회논문지SC
    • /
    • 제39권2호
    • /
    • pp.85-94
    • /
    • 2002
  • 본 논문에서는 CITE를 포함한 2차 반복 학습제어 방법이 수렴 성능의 향상과 외란에 대한 강인성 향상에 덧붙여 초기 오차가 있음에도 불구하고 이를 극복할 뿐만 아니라 기존의 알고리즘보다 더 빠른 수렴 능력이 있음을 확인한다. 또한 불안정한 결과를 낳는 높은 학습 게인의 경우에도 CITE를 추가한 본 학습제어 방법에 의해 안정화됨으로써, 빠른 수렴 특성과 강인성 향상을 가져올 수 있음을 보인다. 그리고 본 알고리즘을 선형 시변 시스템에 대해 적용한 시뮬레이션 결과를 통해 초기 오차의 극복 능력이 뛰어남을 확인하고, 아울러 각 학습 게인들이 수렴 속도와 안정성에 미치는 영향을 상세히 분석한다.

CNN 기반 특징맵 사용에 따른 특징점 가시화와 에러율 (Feature Visualization and Error Rate Using Feature Map by Convolutional Neural Networks)

  • 진태석
    • 한국산업융합학회 논문집
    • /
    • 제24권1호
    • /
    • pp.1-7
    • /
    • 2021
  • In this paper, we presented the experimental basis for the theoretical background and robustness of the Convolutional Neural Network for object recognition based on artificial intelligence. An experimental result was performed to visualize the weighting filters and feature maps for each layer to determine what characteristics CNN is automatically generating. experimental results were presented on the trend of learning error and identification error rate by checking the relevance of the weight filter and feature map for learning error and identification error. The weighting filter and characteristic map are presented as experimental results. The automatically generated characteristic quantities presented the results of error rates for moving and rotating robustness to geometric changes.

Error Control Strategy in Error Correction Methods

  • KIM, PHILSU;BU, SUNYOUNG
    • Kyungpook Mathematical Journal
    • /
    • 제55권2호
    • /
    • pp.301-311
    • /
    • 2015
  • In this paper, we present the error control techniques for the error correction methods (ECM) which is recently developed by P. Kim et al. [8, 9]. We formulate the local truncation error at each time and calculate the approximated solution using the solution and the formulated truncation error at previous time for achieving uniform error bound which enables a long time simulation. Numerical results show that the error controlled ECM provides a clue to have uniform error bound for well conditioned problems [1].

Stop-and-Go 플래그를 가지는 새로운 블라인드 등화 알고리즘 (A New Blind Equalization Algorithm with A Stop-and-Go Flag)

  • 정영화
    • 정보학연구
    • /
    • 제8권3호
    • /
    • pp.105-115
    • /
    • 2005
  • The CMA and MMA blind equalization algorithm has the inevitable large residual error caused by mismatching between the symbol constellation at a steady state after convergence. Stop-and-Go algorithm has a very superior residual error characteristics at a steady state but a relatively slow convergence characteristics. In this paper, we propose a SAG-Flagged MMA as a new adaptive blind equalization algorithm with a Stop-and-Go flag which follows a flagged MMA in update scheme of tap weights as appling the flag obtaining from Stop-and-Go algorithm to MMA. Using computer simulation, it is confirmed that the proposed algorithm has an enhancing performance from the viewpoint of residual ISI, residual error and convergence speed in comparison with MMA and Stop-and-Go algorithm. Algorithm has a new error function using the decided original constellation instead of the reduced constellation. By computer simulation, it is confirmed that the proposed algorithm has the performance superiority in terms of residual ISI and convergence speed compared with the adaptive blind equalization algorithm of CMA family, Constant Modulus Algorithm with Carrier Phase Recovery and Modified CMA(MCMA).

  • PDF

CME 오차와 non-CME 오차의 선형 결합에 의해 제어되는 적응 블라인드 등화 (Adaptive Blind Equalization Controlled by Linearly Combining CME and Non-CME Errors)

  • 오길남
    • 전자공학회논문지
    • /
    • 제52권4호
    • /
    • pp.3-8
    • /
    • 2015
  • 이 논문에서는 신호점 매칭 오차(constellation-matched error: CME)와 비 신호점 매칭 오차(non-constellation-matched error: non-CME)를 선형 결합한 오차 신호 기반의 블라인드 등화 알고리즘을 제안한다. 새로운 오차 신호는 초기 수렴을 달성하기 위한 non-CME 항과 출력 신호의 심볼간 간섭(intersymbol interference: ISI) 성능을 개선하기 위한 CME 항을 포함하도록 설계되었고, 결합 인자를 통해 두 오차 항을 제어한다. 오차 항을 제어하여 등화 단계에 적합한 오차 신호를 발생함으로써 기존 알고리즘에 비해 수렴 속도와 심볼간 간섭 제거 성능을 개선하였다. 다중경로 채널에 잡음을 부가한 조건하에서 이루어진 64-QAM과 256-QAM 신호에 대한 모의실험에서 제안 방법이 CMA와 CMA+DD 동시 등화에 비해 우수한 것으로 나타났다.

Convergence Behavior of the filtered-x LMS Algorithm for Active Noise Caneller

  • Lee, Kang-Seung
    • The Journal of the Acoustical Society of Korea
    • /
    • 제17권2E호
    • /
    • pp.10-15
    • /
    • 1998
  • Application of the Filtered-X LMS adaptive filter to active noise cancellation requires to estimate the transfer characteristics between the output and the error signal of the adaptive canceler. In this paper, we derive an adaptive cancellation algorithm and analyze is convergence behavior when the acoustic noise is assumed to consist of multiple sinusoids. The results of the convergence analysis of the Filtered-X LMS algorithm indicate that the effects of parameter estimation inaccuracy on the convergence behavior of the algorithm are characterize by two distinct components : Phase estimation error and estimated magnitude. In particular, the convergence of the Filtered-X LMS algorithm is show to be strongly affected by the accuracy of the phase response estimate. Simulation results of the algorithm are presented which support the theoretical convergence analysis.

  • PDF

Convergence Analysis of the Filtered-x LMS Adaptive Algorithm for Active Noise Control System

  • Lee, Kang-Seung
    • 한국통신학회논문지
    • /
    • 제28권3C호
    • /
    • pp.264-270
    • /
    • 2003
  • Application of the Filtered-X LMS adaptive filter to active noise control requires to estimate the transfer characteristics between the output and the error signal of the adaptive canceler. In this paper, we derive an adaptive control algorithm and analyze its convergence behavior when the acoustic noise is assumed to consist of multiple sinusoids. The results of the convergence analysis of the Filtered-X LMS algorithm indicate that the effects of parameter estimation inaccuracy on the convergence behavior of the algorithm are characterize by two distinct components : Phase estimation error and estimated magnitude. In particular, the convergence of the Filtered-X LMS algorithm is shown to be strongly affected by the accuracy of the phase response estimate. Simulation results of the algorithm are presented which support the theoretical convergence analysis.

Takagi-Sugeno 퍼지모델에 기반한 반복학습제어 시스템: 이차원 시스템이론을 이용한 접근방법 (Takagi-Sugeno Fuzzy Model-Based Iterative Learning Control Systems: A Two-Dimensional System Theory Approach)

  • 추준욱;이연정;최봉열
    • 제어로봇시스템학회논문지
    • /
    • 제8권5호
    • /
    • pp.385-392
    • /
    • 2002
  • This paper introduces a new approach to analysis of error convergence for a class of iterative teaming control systems. Firstly, a nonlinear plant is represented using a Takagi-Sugeno(T-S) fuzzy model. Then each iterative learning controller is designed for each linear plant in the T-S fuzzy model. From the view point of two-dimensional(2-D) system theory, we transform the proposed learning systems to a 2-D error equation, which is also established if the form of T-S fuzzy model. We analyze the error convergence in the sense of induced L$_2$-norm, where the effects of disturbances and initial conditions on 2-D error are considered. The iterative teaming controller design problem to guarantee the error convergence can be reduced to the linear matrix inequality problem. This method provides a systematic design procedure for iterative teaming controller. A simulation example is given to illustrate the validity of the proposed method.