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Abstract

In this paper, a sliding mode controller guaranteeing
finite time error convergence is proposed for uncer-
tain systems. By using a novel sliding hyperplane, it
1§ guaranteed that the output tracking error converges
to zero in finite time.
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1 Introduction

A normal approach of control system designer is to
make a model of the plant under consideration and
then design a controller for the model so that the
closed-loop system is stable. Actually, almost all of
cases, there exists a modelling error. In addition, it
is very difficult to measure the actual parameter of
the plant ezactly. It must has the measurement er-
ror/uncertainty. Thus, the control system that can
handle the system uncertainty has been required.

It has been known that the sliding mode control,
which is also known as variable structure control, has
robust and invariant property to parameter uncer-
tainties and external disturbances [1]-{3]. The slid-
ing mode control is designed for the system state to
be forced to stay on the predetermined sliding sur-
face. When the system is in the sliding mode, the
overall system shows the invariance property to pa-
rameter variations and external disturbances, and the
dynamics of the closed-loop system is determined by
the prescribed sliding surface.

Generally, a sliding surface is designed as a linear
dynamic equation, e.g., s = é+ce. However, the linear
sliding surface can guarantee only the asymptotic error
convergence in the sliding mode, i.e., the output error
can not converge to zero in finite time.

Recently, to get a better performance on the slid-
ing mode, terminal sliding mode control methods have
been studied [4]-[7]. They have used nonlinear func-

tions, s = é + c-€", where ¢ > 0 is a positive constant,
and 0 < r < 1 is a rational number, so that the er-
ror converges to zero in finite time. However, these
methods have a singularity problem [8]. It is a critical
one because singular points are located around the ori-
gin{the equilibrium point) in the state space, that is,
a set of singular points is { (e,é) |[e =0and e #0 }.
Therefore, conventional terminal sliding mode control
schemes may cause a problem — very large control sig-
nal — in the steady state, or when an initial condition
is located around the set of singular points — a vertical
axis in the phase plane. Although a modified terminal
sliding mode control method was proposed (8], it also
has the same problem because it does not always gen-
erate a bounded range space for any bounded domain.

Thus, a novel sliding mode control method is pro-
posed in this paper. The proposed sliding mode con-
trol scheme uses two stage control; sliding mode con-
trol with a conventional linear sliding hyperplane, and
that with a terminal sliding hyperplane. By switching
the sliding hyperplane appropriately, it is guaranteed
that the tracking error converges to zero in finite time
with no singularity.

2 Problem Formulation

Consider a second-order nonlinear uncertain system

described by
k() = £06,%,8) + G,k Du®), (1)

where x € R” is the state vector, u € R" is the con-
trol input vector, f € R" is the vector of nonlinear
dynamics composed of f;, and the matrix G € R**" is
the control gain, and is assumed to be invertible and
matching condition is satisfied. It is assumed that the
following equations are satisfied:

lfi - fi

where 1 = 1, 2, -+, n, I is the n x n identity matrix,
and the estimated input matrix G is assumed to be

< F and G=(1+A4)G,

E-96



invertible, and A € R™™ composed of A;; satisfies
the following inequality:

|A;] < A

i

where A;; > 0, and ||A] < 1, (A) represents a nom-
inal/estimated value of (-), ¢ = 1,2,---,n, and j =
1,2,---,n.

3 Control System Design

3.1 The First Stage

In the first stage, a conventional sliding mode control
system is designed for the given plant. Let us define
a linear sliding hyperplane s(t) as

sk (t) = é(t) + Ae(t), (2)

where e(t) = x(&) — xq(t), x4{t) is a given twice
continuously differentiable reference trajectory, A =
diag{A1, A2, -, Ap} with A; > 0, where:=1,2,---  n.

By using the linear sliding surface (2), the following
theorem can be derived for the existence of the sliding
mode.

Theorem 1 The existence of the sliding mode can be
guaranteed if the following controller is applied to the

plant (1):

uf(t) =G {xd —Ae—f—ke sgn(s)} , (3

where kesgn(s) is the vector of components kisgn(s;),
1. e,

kosgn(s) = [kl'sgn(sl)a k2‘39n(52)7 Tty kn'sgn(sn)} )

and each positive constant k; is chosen such that the
following equation 1is satisfied.

(1—Bu) ki = > Aijk;
J#i

:E+2Zij‘;idj—/\jéj—ﬂ- +m (4)
=1

wheren; >0, and i = 1,2,---,n.

Proof  Differentiating the linear sliding surface s”
in (2) with respect to time, one can obtain
st = %-—%g+Ae=f4+Gul—%q+Aé
= f—%Xq+Aé
+(I+A)GG! [&d —Ae—F_ke sgn(s)}
= f—f—kesgn(s)
A (xd —Ae—F—ke sgn(s)) .
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Thus, each element of the vector & can be written as
L — o f nA,‘ 507 Aeés — f
i = fi fi+ Z ij \ LdJ G€5 f]
j=1
- ZAi]‘k)j-Sg’fL(Sj) — (14 Ay) k;-sgn(si).

j#i

Therefore, the sliding mode existence condition,
stsh < —ny lsiL,, is verified if

(1-Au)ki > E’\LZZU

Eaf = Njéj — [
j=1
" —
+ Z Aiikj + ms,
J#i
where 1 = 1,2, .-+, n. Since k was chosen from (4), it

is clear that the above inequality can be guaranteed.
Hence, the existence and uniqueness of non-negative
k;’s satisfying (4) is guaranteed by Frobenius-Perron
theorem {12]. n

Theorem 2 (Frobenius-Perron) [12] Consider a
square matriz A with non-negative elements. Then,
the largest real eigenvalue of A, Anaz, 1S non-negative.
Furthermore, consider the following equation:

I-XTA)y =z, (5)

where all components of the vector z are non-negative.
If A > Apaz, then the above equation admits a unique
solution y, whose components y; are all non-negative.

3.2 The Second Stage

When s; hits the sliding hyperplane, the linear sliding
hyperplane, s”, is substituted by the terminal sliding
hyperplane, s/, which will be defined later. Suppose
that the hitting state can be represented as

SiL = éi(th) + Aei(th) =0,

where ¢, represents the hitting time. Since \; > 0, the
hitting state must be located at II or IV quadrants,
ie.,

e@(th)éi(th) < 0.
The nonlinear terminal sliding hyperplane is designed

as
sVl = & 4 Te?, (6)

1
where I' = diag{71a72""a7n}a '2_ <p= g <1, q

=2k+1, r=2m+4+1,0 < k < m, k and m are
integers and predetermined. The ~y; is obtained using
the condition that, at the hitting instant,

s{“(th) = sf’(th) =0.



From the above equation, v; is
Y= Ales(t))' 7.

For the nonlinear terminal sliding hyperplane, the fol-
lowing theorem can be derived.

Theorem 3 The ezistence of the sliding mode can be
guaranteed if the following controller is applied to the

plant (1):
uMi(t) = G} [xd +pl%e® 1 —f—_he sgn(s)} )
(7)

where hesgn(s) is the vector of components hysgn(s;),
1. €.,

hesgn(s) = [hi-sgn(s1), he-sgn(s2), - -+, hn-sgn(sy)],

and each positive constant h; is chosen such that the
following equation is satisfied.

(1 — Zii) hi - Z—A-ijhj
j#i

= E*}‘iz.,]

j=1

Eaj +prier Tt = fi| 4 B8, (8)

where ; > 0, andi =1,2,--- ,n.

Proof Differentiating the nonlinear terminal sliding
surface s’V in (6) with respect to time, one can obtain

.NL . . —1.
SV =& — g + vipel €.

Note that the state is on the sliding hyperplane, i.e.,

SlNL =é; + ve; = 0.

Thus, é; can be rewritten as

€ = —7i€;.
NL _ o 2 _2p-1
i = Xy~ Zg —PY €

= fi—fi+ ZAi]’ (iidj +p’Yi2€,?p_1 - fj)

j=1
n
- Z Aijhi-sgn(s;) — (14 Ay) hi-sgn(s:).
J#i
Therefore, the sliding mode existence condition,

sNEsNE < —B; |sNE|, is verified if

1

n
(1-Au)h > F+ Z_A_ij Faj +pier T - f;

Jj=1

+ Zzijhj + Bs,
J#
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where ¢ = 1,2, -, n. Since h was chosen from (8), it
is clear that the above inequality can be guaranteed.
Hence, the existence and uniqueness of non-negative
hi’s satisfying (8) is guaranteed by Frobenius-Perron
theorem [12]. ]

For the finite time error convergence, we can derive
the following theorem

Theorem 4 The total error convergence time,
tconvi, 18
|s:(0)] 1 {ISi(O)l}l_p
tconvi < + : 9
i %(1-p) L N ®)
Proof In the first stage, we can conclude that

wherever the initial state is located, it hits the linear
sliding hyperplane in finite time. From Theorem 1, it
is guaranteed that

5i8; < —mi|si] -

Thus, it is clear that the trajectory of a state, x;,
reaches the linear sliding hyperplane, s, in finite time

|s:(0)|

smaller than ——— . In other words, the reaching

i
time tpgacy; can be written as

15:(0)] 10

i

L
trEACH; <

In the second stage, for the nonlinear terminal slid-
ing hyperplane in (6), it is clear that the relaxation
time ( the time an initial state gets to zero ) can be
obtained as [11]

'

NL _ iei(th)

tREACH; = = wi—p) (11)
1}

Furthermore, it is also obvious that e;(ts) is
bounded as

lei(t)] < !Siif))l (12)
< ei(0)+éi)(\9) (13)

Therefore, substituting the |e;(t,)| in (11) as that of
NL can be rewritten as

(13), treacH;
1 |s:(0)[ "™
< Yi(1-p) { A } (19

¢ NL
REACH;

where ¢ = 1,2, ---,n. Thus, by adding up the results
for two stage, (10) and (11), the total error conver-
gence time can be obtained as

|5:(0)] 1 ls: () '
tconvi < ™ +’ﬁ(1_p){ N } )




4 Conclusions

The sliding mode control with finite time error con-
vergence has been proposed for nonlinear uncertain
systems. By using the two stage control methodology,
it was guaranteed that the output tracking error con-
verges to zero in finite time and there is no sinularity.
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