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Abstract. In this paper, we present the error control techniques for the error correction

methods (ECM) which is recently developed by P. Kim et al. [8, 9]. We formulate the local

truncation error at each time and calculate the approximated solution using the solution

and the formulated truncation error at previous time for achieving uniform error bound

which enables a long time simulation. Numerical results show that the error controlled

ECM provides a clue to have uniform error bound for well conditioned problems [1].

1. Introduction

We consider numerical solutions for the ordinary differential equation (ODE)
well conditioned initial value problem (IVP) [1]

(1.1)
dϕ

dt
= f(t, ϕ(t)), t ∈ [t0, tf ], ϕ(t0) = ϕ0.

Many numerical techniques [2, 3, 12] have been developed for the accurate and
efficient solution of the well conditioned IVPs, including linear multi-step methods,
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Runge-Kutta methods and operating splitting techniques, etc. In this paper, we
present a technique to improve the efficiency of the error correction method (ECM)
recently introduced by P. Kim, X. Piao, and S. Kim [8, 9, 10]. ECM is a variation
on the deferred correction methods [3, 4] which allow for the construction of stable
and extremely high order solutions and is designed to avoid the iteration process
for nonlinear problems. To avoid the unnecessary iteration process, a deferred
correction equation is converted to an asymptotical linear ODE based on the local
platform. It turns out that ECM can have the excellent super-convergence O(h2p+2)
if one can makes a local platform y(t) to the true solution on each time step such that
the local residual error f(t, y(t))− y′(t) has the asymptotic behavior O(hp), where
p is any positive integer. Note that the p-stage implicit Runge-Kutta(RK) method
can achieve the order of accuracy 2p (see [5]) and it requires solving a simultaneous
system of equations at each time step by a costly Newton-type iteration.

The primary goal of this paper is to introduce an error control mechanism to
improve its efficiency of ECM. There have been several approaches [6, 7, 11] to
control numerical errors derived from existing numerical methods, such as adaptive
time stepping, global error control and long time error estimation, etc. These
approaches have a common framework to estimate the error and solution - the
solution at each time is approximated by using the solution at the previous time
step and the error is estimated only for controlling time step size to satisfy the
stability region for a given method. In this paper, we propose a new technique
to estimate the solution and the local truncation error at each time for achieving
uniform error bound which enables a long time simulation. Unlike the existing
mechanism to estimate the solutions and errors, the approximated solution ϕm+1

at tm+1 is calculated by using both the approximated solution ϕm and the estimated
error em at the previous time tm. That is, an estimated error em at the previous
step is needed to estimate the solution ϕm+1 at the next step. In other words, for
further approximations, we recursively need the estimation for a local truncation
error em+1 at tm+1.

This paper is organized as follows. In Sec. 2, we describe how to control the
error controlled ECM formula. Preliminary numerical results are presented in Sec.
3 to give numerical evidences for the theoretical analysis. Finally in Sec. 4, we
summarize our results and discuss applications of the new techniques.

2. Abstract for Error Controlled Error Correction Methods

In this section, we briefly review the algorithm ECM and introduce a new error
control methodology having uniform error bound for well conditioned problem.

2.1. General description

Let x(t) be a given local approximation for the solution ϕ(t) defined on the
integration step [tm, tm+1] such that

(2.1) Rx(t) := f(t, x(t))− x′(t) = O(hp), t ∈ [tm, tm+1]



Error Controlled ECM 303

for some positive number p. Then the difference ψx(t) = ϕ(t)−x(t) satisfies a linear
ODE

(2.2) ψx(t)′ = Jx(t)ψx(t) +Rx(t) +
1

2
ψx(t)2γ0(t), t ∈ [tm, tm+1],

where Jx(t) := fϕ(t, x(t)) and γ0(t) = fϕϕ(t, θ1x(t) + (1− θ1)ϕ(t)) with θ1 ∈ (0, 1).
Let us define the integrating factor

(2.3) Ex(t) := exp
(∫ tm+1

t

Jx(ξ)dξ
)
.

By multiplying (2.2) by the integrator factor Ex(t), and integrating the resulting
equation in [tm, tm+1], one may get
(2.4)

ψx(tm+1) = Cx(αm) + Ex(tm)(ψx(tm)− αm) +
1

2

∫ tm+1

tm

γ0(ξ)E
x(ξ)(ψx(ξ))2dξ,

where αm is a given approximation for ψx(tm) and

(2.5) Cx(αm) = Ex(tm)αm +

∫ tm+1

tm

Ex(ξ)Rx(ξ)dξ.

Note that by the definition of Ex(t) defined in (2.3), we can easily check that
Cx(ψx(tm)) can be calculated by the solution of the following ODE with the initial
condition,

(2.6)
ϑx(t)′ = Jx(t)ϑx(t) +Rx(t) t ∈ [tm, tm+1]

ϑx(tm) = αm,

that is, Cx(ψx(tm)) = ϑx(tm+1). It is approximated by using the existing numerical
method and the solution ϕ(tm+1) is calculated by

(2.7)

ϕ(tm+1) = ψx(tm+1) + x(tm+1)

= ϑx(tm+1) + x(tm+1) + Ex(tm)(ψx(tm)− αm)

+
1

2

∫ tm+1

tm

Ex(ξ)(ψx(ξ))2γ0(ξ)dξ.

Remark 1. There are two assumptions. The first one is that αm is well approx-
imated close to ψx(tm) and the other one is that ψx(tm) is sufficiently small. It
implies that the two remaining terms of ϕ(tm+1) are small enough and ϕ(tm+1) can

be approximated up to the magnitude of
∫ tm+1

tm
Ex(ξ)(ψx(ξ))2γ0(ξ)dξ.

Based on the mechanism to derive for ψx(tm+1) and ϕ(tm+1), we now describe
a general methodology for error controlled ECM. Suppose that the approximations
ϕm and em are given for the true solution ϕ(tm) and its actual error Em at time tm,
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respectively. To approximate ϕ(t), we define ym(t) as x(t) such that ym(tm) = ϕm,
that is, ψym(tm) = Em, so em is suitable for αm as an approximation for ψym(tm).
Since Cym(em) is a solution of the ODE system as explained in (2.6), the existing
numerical method using pth order is employed to approximate ϕ(tm+1). Let ϑ

ym

m+1

be the solution of the ODE system,

(2.8) Cym(αm) = ϑym(tm+1) = ϑym

m+1 +Rp,

where Rp is the truncation error derived from the pth order numerical methods and
Rp = Cph

p+1 + O(hp+2) with an appropriate constant Cp. Therefore, ϕ(tm+1) is
represented by
(2.9)

ϕ(tm+1) = ϑym

m+1 + Cph
p+1 +O(hp+2) + ym(tm+1) + Eym(tm)(ψym(tm)− em)

+
1

2

∫ tm+1

tm

Eym(ξ)(ψym(ξ))2γ0(ξ)dξ.

Let us define ϕm+1 an approximation for ϕ(tm+1), then, it can be written by

(2.10) ϕm+1 = ϑym

m+1 + ym(tm+1).

Then the actual error is given by

(2.11) Em+1 = Rp + Eym(tm)(ψym(tm)− em) +
1

2

∫ tm+1

tm

Eym(ξ)(ψym(ξ))2γ0(ξ)dξ.

Recall that unlike the existing mechanism, ϕ(tm+1) depends on em as well as ϕm, so
does ϕm+1. To complete the formula, based on the assumption that two remaining
term of Em+1 are sufficiently small, we need a methodology to estimate Em+1 so
that the dominated term of Em+1 in (2.11) can be estimated. For this, reason, we
will need (2.4) with another local platform zm(t) to satisfy zm(tm+1) = ϕm+1 for
estimating Em+1. Notice that

(2.12)
ψzm(tm) = ϕ(tm)− zm(tm)

= ϕm + em − zm(tm) + Em − em.

On the assumption that em is very close to Em, we can set αm = ϕm+em−zm(tm)
for an approximation of ψzm(tm). Then, we will solve (2.6) again with the initial
condition ϕm + em − zm(tm) and zm(t) using an existing numerical method having
qth order and Em+1 is estimated by

(2.13)

Em+1 = ψzm(tm+1) = ϑzmm+1 +Rq + Ezm(tm)(ψzm(tm)− αm)

+
1

2

∫ tm+1

tm

Ezm(ξ)(ψzm(ξ))2γ0(ξ)dξ

where Rq = Cqh
q+1 + O(hq+2). With an assumption that two remaining terms of

Em+1 in (2.13) are sufficiently small, Em+1 is well approximated by em+1 and its
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quantity is

(2.14) em+1 = ϑzmm+1

Since Em+1 in (2.13) is approximated for the dominated term of Em+1 in (2.11),
the qth order numerical method is chosen so it can fully estimate the magnitude of
Rp = Cph

p+1 + O(hp+2). Also, em+1 is estimated by using the calculated values
ϕm, ϕm+1 and em and is used for estimating the solution at the next time step.

Theorem 2. Assume that the the local platforms ym(t) and zm(t) were set up
to have magnitudes O(hp1) and O(hq1), respectively. The actual error Em+1 has
uniform error bound and its magnitude is

(2.15) Em+1 ∼ O(hmin(p+1,q+1,2p1+1,2q1+1)).

Proof. Recall (2.13)

(2.16) |Em+1 − em+1| ≤ Ezm(tm)|Em − em|+O(hq+1) +O(h2q1+1).

We let E0 = e0 = 0 and the inequality leads us

(2.17) |Em − em| ≤ (Ezm)m − 1

Ezm − 1
O(hmin(q+1,2q1+1)).

From Eq. (2.11),
(2.18)

|Em+1| ≤ O(hp+1) + Ezm(tm)|Em − em|+O(hq+1) +O(h2q1+1)

≤ O(hp+1) +O(hmin(q+1,2q1+1)) +O(h2p1+1)

≤ O(hmin(p+1,q+1,2p1+1,2q1+1)). 2

For well conditioned problem, Theorem can be simply interpreted to the fol-
lowing corollary.

Corollary 3. Assume that the the local platforms ym(t) and zm(t) were set up to
have magnitudes O(hp1) and O(hq1), respectively. For well conditioned problem, the
actual error Em+1 has uniform error bound and its magnitude is

(2.19) Em+1 = C1h
min(p+1,q+1,2p1+1,2q1+1).

where C1 is an appropriate constant.

Proof. Recall (2.13)

(2.20) |Em+1 − em+1| ≤ Ezm(tm)|Em − em|+ Cqh
q+1 +O(h2q1+1).

Since we are solving the well conditioned problem, Ezm(tm) ≤ 1,

(2.21) |Em − em| ≤ O(hmin(q+1,2q1+1)).
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From Eq. (2.11),
(2.22)

|Em+1| ≤ Cph
p+1 + Ezm(tm)|Em − em|Cqh

q+1 +O(h2q1+1)

≤ Cph
p+1 +O(hmin(q+1,2q1+1)) +O(h2p1+1)

≤ C1h
min(p+1,q+1,2p1+1,2q1+1). 2

2.2. Practical explicit algorithm

Based on the general description of the methodology, we concretely present the
algorithm using the first and second local platforms and existing numerical methods
- the second and third Runge-Kutta methods (RK2 and RK3) to estimate solutions,
respectively. To begin with the simplest case, we let ym(t) be the Euler’s polygon
defined by

(2.23) ym(t) := ϕm + (t− tm)f(tm, ϕm), t ∈ [tm, tm+1].

As described in the previous subsection, the difference ψym(t) = ϕ(t) − ym(t) and
(2.5) lead to the following ODE system

(2.24)
ϑym(t)′ = f(t, ψym(t) + ym(t))− y′m(t) t ∈ [tm, tm+1]

ϑym(tm) = em.

To solve the ODE system (2.24), we simply use the 2nd order Runge-Kutta (RK2).
For any step size h > 0,

(2.25) ψym

m+1 = em +K2,

with

(2.26)
K1 = h[f(t, em + ym(tm))− y′m(tm)]

K2 = h[f(t, em +
K1

2
+ ym(tm +

h

2
))− y′m(tm +

h

2
)]

and

(2.27) ϑym(tm+1)− ϑym

m+1 = R2,

which R2 is a truncation error with the estimation using RK2 and its magnitude is
O(h3). ϕm+1 is represented by

(2.28) ϕm+1 = ϕm + em + f(tm +
h

2
, ϕm + em +

h

2
f(tm, ϕm + em)),

and the actual error Em+1 is

(2.29) Em+1 = R2 + Eym(Em − em) +O(h5).
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Lemma 4. The truncation error R2 derived from RK2 is calculated as

(2.30) R2 =
h3

24
ϕ̃(tm)′′′ +

h3

8
ϕ̃(tm)′′fϕ +O(h4).

Proof. From Eq. (2.27) and the Taylor expansion of ψym(tm+1),

(2.31)

R2 = ϑym(tm+1)− ϑym

m+1

=
h3

24

(
ftt + 2ftϕf + fϕϕf

2 + 4fϕft + 4fϕfϕf
)
+O(h4)

=
h3

24
ϕ̃(tm)′′′ +

h3

8
ϕ̃(tm)′′fϕ +O(h4)

where ϕ̃(tm)′ = f , ϕ̃(tm)′′ = ft + fϕf , and ϕ̃(tm)′′′ = ftt + 2ftϕf + fϕϕf
2 + fϕft +

fϕfϕf at time tm. 2

Therefore, Em+1 is summarized as follows

(2.32) Em+1 =
h3

24
ϕ̃(tm)′′′ +

h3

8
ϕ̃(tm)′′fϕ + Eym(Em − em) +O(h4).

Recall that unlike the existing mechanism, ϕ(tm+1) depends on em as well as
ϕm, so does ϕm+1. To complete the formula, we need another methodology to
estimate Em+1. For this reason, we introduce another local platform zm(t) to
satisfy zm(tm+1) = ϕm+1 for estimating Em+1 as follows:

(2.33) zm(t) = ϕm+1 + (t− tm+1)f(tm+1, ϕm+1) +
(t− tm+1)

2

2
f1j f

j(tm+1, ϕm+1),

where the Einstein summation symbol f1j f
j means ft + fϕf and is estimated as

(2.34) f1j f
j =

2

h

(
f(tm+1, ϕm+1)− f(tm+ 1

2
, ϕm+1 −

h

2
f(tm+1, ϕm+1))

)
.

Notice that the initial condition of ψzm(tm) is considered as

(2.35) ψzm(tm) = ϕ(tm)− zm(tm) +O(h4) = ϕm + em − zm(tm) +O(h4).

With ϑzmm = ϕm+em−zm(tm), the 3rd order Runge-Kutta (RK3) method is applied
to solve the ODE system derived from the local platform zm(t) as done for (2.6).
For any step size h > 0,

(2.36)

K1 = h[f(t, ψzm
m + ym(tm))− z′m(tm)]

K2 = h[f
(
t, ψzm

m +
K1

2
+ zm

(
tm +

h

2

))
− z′m

(
tm +

h

2

)
]

K3 = h[f(t, ψzm
m −K1 + 2K2 + zm(tm + h))− z′m(tm + h)]

ϑm+1 = ϑzmm +
1

6
(K1 + 4K2 +K3).
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Hence, Em+1 is expanded as

(2.37) Em+1 = ϑzmm+1 +R3 + Eym(Em − em) +O(h7).

where R3 is a local truncation error derived from RK3 and its magnitude is O(h4).
By Taylor expansion of em+1 at (tm, ϕm),

(2.38) em+1 =
h3

24
ϕ̃(tm)′′′ +

h3

8
ϕ̃(tm)′′fϕ +O(h4 + h3em + e2m)

Summarizing (2.29) and (2.37), one may complete the algorithm as follows.

(2.39)
ϕm+1 = ϕm + hf(tm, ϕm) + ϑym

m+1, m ≥ 0,

em+1 = ϑzmm+1, m ≥ 0; e0 = 0.

3. Numerical Results

In this section, preliminary numerical results are presented to compare the ef-
ficiency of the error controlled ECM to the 3rd order RK method.

3.1. Nonlinear ODE system

For the first numerical example, we consider the non-stiff and nonlinear problem

(3.1)
dϕ

dt
=
κϕ(t)(1− ϕ(t))

2ϕ(t)− 1
, t ∈ (0, 200]; ϕ(0) =

5

6

whose analytic solution is ϕ(t) = 1
2 +

√
1
4 − 5

36 exp(−κt) with a parameter κ =

1/200. For the time stepping, we use the explicit scheme(RK2/RK3) for error
controlled ECM and we march from t0 = 0.0 to tfinal = 200.0 with fixed step size
∆t = 0.2.

At first, we demonstrate the error behavior of the error controlled ECM and
compare it with the 3rd order Runge Kutta (RK3) method since error controlled
ECM has the 3rd order. We plot the relative errors in the whole simulation time
interval as depicted in Fig. 1(a) and show the accuracy of error controlled ECM is
much better than the existing 3rd order method and the error grows much more
gentle. As seen in Fig. 1(b), convergence results are presented for both the error
controlled ECM and the existing 3rd order Runge-Kutta method for different step
size selections. The plot indicate the order of the error controlled ECM is close to
the expected order 3 since RK2 and RK3 are used to estimate the solution and the
truncation error for error controlled ECM framework.

3.2. ODE system

As observed the previous example, the numerical convergence order of the error
controlled ECM using RK2/RK3 is greater than 3, but less than 4. Hence, in our
second example, not only RK3 method, but the 4th order method (RK4) is also
compared with our results.
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Figure 1: Comparison of the (a) error behavior and (b) convergence order
for Error Controlled ECM 23 and 3rd order Runge Kutta (RK3)

The problem considered in this example is

(3.2)
y′(t) = λ(t− p(t))2 − p′(t)

y(0) = p(0)

where y(t) and p(t) can be vectors of dimension N and the exact solution is y(t) =
p(t) and λ = 1.0. In this example, we choose N = 1 and cos(t) as p(t). We
demonstrate the (relative) error behavior of the error controlled ECM by computing
the solution from t0 = 0 to tfinal = 20π with time step size ∆t = π/60. Fig. 2
shows that the error of error controlled ECM is gradually growing with ,whereas
other existing methods (RK3 and RK4) have linear growth of the error.

4. Conclusion and Further Discussion

A new mechanism to control error for well-conditioned problems is developed
in ECM framework. Unlike the traditional way to approximate solutions singly
using an approximated solution at the previous time step, we suggest formulating a
local truncation error and approximating the solutions using both the approximated
solution and local truncation error at the previous step. Numerical results show that
the error controlled ECM provides a possible vision to obtain uniform error bound
which has never been achieved in existing numerical methods and which enables a
long time simulation.

To improve the performance of the error controlled ECM, several extensions are
currently being pursued. Since the main purpose of this study is to enable a long
time simulation by minimizing the local accumulated error, the generalization of
the error controlled ECM has been applied to real long time simulator such as real
power systems, etc. Numerical results are very promising and a paper reporting
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Figure 2: Comparison of Error Behavior for error controlled ECM with for
other existing methods (RK3 and RK4)

on this result is in preparation. Another work to pursue is to apply this technique
to stiff system, and investigate the stability analysis for the system. The other
possibility for further efficiency of error controlled ECM is to increase accuracy by
employing higher order techniques to estimate the solution and the local truncation
error. Results along these directions will be reported in the future.
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