• Title/Summary/Keyword: Error map

Search Result 841, Processing Time 0.027 seconds

Site Index Equations and Estimation of Productive Areas for Major Pine Species by Climatic Zones Using Environmental Factors (기후대별 입지환경 인자에 의한 소나무류의 지위지수 추정식 및 적지 구명)

  • Shin, Man-Yong;Won, Hyung-Kyu;Lee, Seung-Woo;Lee, Yoon-Young
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.3
    • /
    • pp.179-187
    • /
    • 2007
  • This study was conducted to develop site index equations for some pine species by climatic zones based on the relationships between site index and environmental factors. The selected pine species were Pinus densiflora Sieb. et. Zucc., Pinus densiflora for, erecta, and Pinus thunbergii. A total of 28 environmental factors were obtained from a digital forest site map. The influence of 28 environmental factors on site index was evaluated by multiple regression analysis. Four to eight environmental factors were selected in the final site index equation for pine species by climatic zones. The site index equations developed in this study was then verified by three evaluation statistics such as model's estimation bias, model's precision and mean square error type of measure. We concluded that the site index equations for the pine species by climatic Bones were capable of estimating forest site productivity. Based on these site index equations, the amount of productive areas for the species by climatic zones was estimated by applying the GIS technique to digital forest maps.

An Efficient BC Approach to Compute Fractal Dimension of Coastlines (개선된 BC법과 해안선의 프랙탈 차원 계산)

  • So, Hye-Rim;So, Gun-Baek;Jin, Gang-Gyoo
    • Journal of Navigation and Port Research
    • /
    • v.40 no.4
    • /
    • pp.207-212
    • /
    • 2016
  • The box-counting(BC) method is one of the most commonly used methods for fractal dimension calculation of binary images in the fields of Engineering, Science, Medical Science, Geology, etc due to its simplicity and reliability. It deals with only square images with each size equal to the power of 2 to prevent it from discarding unused pixels for images of arbitrary size. In this paper, we presents a more efficient BC method based on the original one, which is applicable to images of arbitrary size. The proposed approach allows the number of the counting boxes to be real to improve the estimation accuracy. The mean absolute error performance is computed on two deterministic fractal images whose theoretical dimensions are well known to compare with those of the existing BC method and triangular BC method. The experimental results show that the proposed method can outperform the two methods and assess the complexity of coastline images of Korea and Chodo island taken from the Google map.

Comparative Analysis of SWAT Generated Streamflow and Stream Water Quality Using Different Spatial Resolution Data (SWAT모형에서 다양한 해상도에 따른 수문-수질 모의결과의 비교분석)

  • Park, Jong-Yoon;Lee, Mi-Seon;Park, Geun-Ae;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.102-106
    • /
    • 2008
  • This study is to evaluated the impact of varying spatial resolutions of DEM (2 m, 10 m, and 30 m), land use (QuickBird, 1/25,000 and Landsat), and soil data (1/25,000 and 1/50,000) on the uncertainty of Soil and Water Assessment Tool (SWAT) predicted streamflow, sediment, T-N, and T-P transport in a small agricultural watershed ($1.21\;km^2$). SWAT model was adopted and the model was calibrated for a $255.4\;km^2$ watershed using 30 m DEM, Landsat land use, and 1/25,000 soil data. The model was run with the combination of three DEM, land use, and soil map respectively. The SWAT model was calibrated for 2 years (1999-2000) using daily streamflow and monthly water quality (SS, T-N, T-P) records from 1999 to 2000, and verified for another 2 years (2001-2002). The average Nash and Sutcliffe model efficiency was 0.59 for streamflow and the root mean square error were 2.08, 4.30 and 0.70 tons/yr for sediment, T-N and T-P respectively. The hydrological results showed that output uncertainty was biggest by spatial resolution of land use. Streamflow increase the watershed average CN value of QucikBird land use was 0.4 and 1.8 higher than those of 1/25,000 and Landsat land use caused increase of streamflow.

  • PDF

Improvement of Public Announcement of Topographical Drawing for Linear-Type Infrastructure (선형형태 사회기반시설물의 지형도면 고시 개선방안)

  • Moon, Jung Kyun;Kwon, Hun Yeong;Cho, Hyoung Sig;Sohn, Hong Gyoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1327-1334
    • /
    • 2014
  • Linear form of public works such as roads, railways and rivers, generally used as long work crossing administrative districts, can be several hundreds km length and narrow. These linear forms use SCM sheets, which do not include the quadrangle shape, to make a public announcement of topographical drawing in order to get the work approval. the Integrated measurement channel investigation and cadastral act that are established in 2009 apply the ITRF for the composition of design and construction books and coordinates of topographical map in order to get the work approval. However according to the article 5 of additional clause, while the cadastre is maintaining local coordinates, if there is a technical error in the content of the Public Announcement of Topographical Drawing that used the SCM, the question of responsibility of land borders and the efficacy or not of the announcement is raised as an administrative measure. After analysing the causes and enforcing coordinate conversion and correction taking into account linear form work's features, the result was reflected in the existing SCM. As a conclusion, the present study proposes the improvement of the procedures of the Public Announcement of Topographical Drawing.

Application of Hydroacoustic System and Kompsat-2 Image to Estimate Distribution of Seagrass Beds (수중음향과 Kompsat-2 위성영상을 이용한 해초지 분포 추정)

  • Kim, Keunyong;Eom, Jinah;Choi, Jong-Kuk;Ryu, Joo-Hyung;Kim, Kwang Yong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.3
    • /
    • pp.181-188
    • /
    • 2012
  • Despite the ecological importance of seagrass beds, their distributional information in Korean coastal waters is insufficient. Therefore, we used hydroacoustic system to collect accurate bathymetry and classification of seagrass, and Kompsat-2 (4 m spatial resolution) image for detection of seagrass beds at Deukryang Bay, Korea. The accuracy of Kompsat-2 image classification was evaluated using hydracoustic survey result using error matrix and Kappa value. The total area of seagrass beds from satellite image classification was underestimated compared to the hydroacoustic survey, estimated 3.9 and $4.5km^2$ from satellite image and hydroacoustic data, respectively. Nonetheless, the accuracy of Kompsat-2 image classification over hydroacoustic-based method showing 90% (Kappa=0.85) for the three class maps (seagrass, unvegetated seawater and aquaculture). The agreement between the satellite image classification and the hydroacoustic result was 77.1% (the seagrass presence/absence map). From our result of satellite image classification, Kompsat-2 image is suitable for mapping seagrass beds with high accuracy and non-destructive method. For more accurate information, more researches with a variety of high-resolution satellite image will be preceded.

Integrated Color Matching in Stereoscopic Image by Combining Local and Global Color Compensation (지역과 전역적인 색보정을 결합한 스테레오 영상에서의 색 일치)

  • Shu, Ran;Ha, Ho-Gun;Kim, Dae-Chul;Ha, Yeong-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.168-175
    • /
    • 2013
  • Color consistency in stereoscopic contents is important for 3D display systems. Even with a stereo camera of the same model and with the same hardware settings, complex color discrepancies occur when acquiring high quality stereo images. In this paper, we propose an integrated color matching method that use cumulative histogram in global matching and estimated 3D-distance for the stage of local matching. The distance between the current pixel and the target local region is computed using depth information and the spatial distance in the 2D image plane. The 3D-distance is then used to determine the similarity between the current pixel and the target local region. The overall algorithm is described as follow; First, the cumulative histogram matching is introduced for reducing global color discrepancies. Then, the proposed local color matching is established for reducing local discrepancies. Finally, a weight-based combination of global and local matching is computed. Experimental results show the proposed algorithm has improved global and local error correction performance for stereoscopic contents with respect to other approaches.

Improvement of Accuracy on Dynamic Position Determination Using Combined DGPS/IMU (DGPS/IMU 결합에 의한 동적위치결정의 정확도 향상)

  • Back, Ki-Suk;Park, Un-Yong;Hong, Soon-Heon
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.361-369
    • /
    • 2006
  • This study conducted an initialization test to decide dynamic position using AHRS IMU sensor, and derived attitude correction angles of vehicles against time through regression analysis. It was also found that the heading angle was stabilized with variation less than 1°after 60 seconds. Using these angles, this study carried out an experiment on the determination of dynamic position for each system in the open sky and in a semi-open sky. According to the results, in the open sky, DGPS alone systems were excellent in accuracy but poor in data acquisition, so the moving distance was around 12m. In DGPS/IMU combined system, accuracy and data acquisition were satisfactory and the moving distance was around 0.3m. In a semi-open sky, DGPS alone systems were excellent in accuracy in order of DGPS < FIMU < DGPS/IMU according to average and standard errors obtained with exclusion of places where data were not be obtained. The moving distance was the same as that in the open sky. For DGPS, when places where data were not obtainable were divided into Several block and they were compared, the maximum deviation from the trajectory was up to 41.5m in DGPS alone system, but it was less than 2.2m and average and standard errors were significantly improved in the combined system. When the navigation system was applied to surveys and the result was compared with position error 0.2mm under the guideline for digital map, it was possible to work on maps on a scale of up to 1 : 1,000.

  • PDF

Efficiency Algorithm of Multispectral Image Compression in Wavelet Domain (웨이브릿 영역에서 다분광 화상데이터의 효율적인 압축 알고리듬)

  • Ban, Seong-Won;Seok, Jeong-Yeop;Kim, Byeong-Ju;Park, Gyeong-Nam;Kim, Yeong-Chun;Jang, Jong-Guk;Lee, Geon-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.4
    • /
    • pp.362-370
    • /
    • 2001
  • In this paper, we proposed multispectral image compression method using CIP (classified inter-channel prediction) and SVQ (selective vector quantization) in wavelet domain. First, multispectral image is wavelet transformed and classified into one of three classes considering reflection characteristics of the subband with the lowest resolution. Then, for a reference channel which has the highest correlation and the same resolution with other channels, the variable VQ is performed in the classified intra-channel to remove spatial redundancy. For other channels, the CIP is performed to remove spectral redundancy. Finally, the prediction error is reduced by performing SVQ. Experiments are carried out on a multispectral image. The results show that the proposed method reduce the bit rate at higher reconstructed image quality and improve the compression efficiency compared to conventional methods. Index Terms-Multispectral image compression, wavelet transform, classfied inter-channel prediction, selective vetor quantization, subband with lowest resolution.

  • PDF

The Effects of Instructions Using Analogies in Learning the Concept of Saturated Solution by Analogy Presentation Types and Verbal Learning Styles (포화 용액 개념 학습에서 비유 표현 방식과 언어적 학습 양식에 따른 비유 사용 수업의 효과)

  • Kang, Hun-Sik;Seo, Ji-Hye
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.2
    • /
    • pp.402-414
    • /
    • 2012
  • This study investigated the effects of the instructions using analogies in learning the concept of saturated solution by the analogy presentation types and the verbal learning styles upon the mapping understanding, the mapping errors, and the perceptions of the instruction. Fifth graders (N=123) at an elementary school were selected and assigned to VA (n=63) and VPA (n=60) groups. As a pretest, a test on the verbal learning style was administered. The students in the VA group learned the target concept with a verbal analogy, while those in the VPA group learned it with a verbal/pictorial analogy. After the students learned it, a mapping understanding test was administered. The students in the VPA group also administered the test on the perceptions of the instruction and some of them were interviewed in depth. The results revealed that the scores of the students with strong verbal learning preference in the VPA group were significantly lower than those in the VA group in the mapping understanding test. However, the scores of the students with weak verbal learning preference were not significantly different between the two groups. Five types of mapping errors were identified: failure to map, mismapping, rash mapping, impossible mapping, and mapping of a surficial feature. According to students' verbal learning styles, there were some differences in the frequencies of mapping errors in the two groups. Many students in the VPA group, regardless of their verbal learning styles, had positive perceptions of the instruction in various cognitive and motivational aspects. However, some of them also pointed out a few difficulties of the instruction. Educational implications of these findings are discussed.

Two-Dimensional Flood Inundation Analysis Resulting from Irrigation Reservoir Failure - Focused on the Real Case with the Minimal Data Set - (농업용 저수지 붕괴에 따른 2차원 홍수범람해석 -계측자료가 부족한 실제사례를 중심으로-)

  • Lee, Jae Young;Kim, Byunghyun;Park, Jun Hyung;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.2
    • /
    • pp.231-243
    • /
    • 2016
  • This study presents the applicability of two-dimensional (2D) flood inundation model by applying to real irrigation reservoir failure with limited available data. The study area is Sandae Reservoir placed in Gyeongju and downstream area of it and the reservoir was failured by piping in 2013. The breach hydrograph was estimated from one-dimensional (1D) hydrodynamic model and the discharge was employed for upstream boundary of 2D flood inundation model. Topography of study area was generated by integrating digital contour map and satellite data, and Cartesian grids with 3m resolution to consider geometry of building, road and public stadium were used for 2D flood inundation analysis. The model validation was carried out by comparing predictions with field survey data including reservoir breach outflow, flood extent, flood height and arrival time, and identifying rational ranges with allowed error. In addition, the applicability of 2D model is examined using different simulation conditions involving grid size, building and roughness coefficient. This study is expected to contributed to analysis of irrigation reservoirs were at risk of a failure and setting up Emergency Action Plan (EAP) against irrigation reservoir failure.