• Title/Summary/Keyword: Error level

Search Result 2,511, Processing Time 0.03 seconds

Bayesian Curve-Fitting in Semiparametric Small Area Models with Measurement Errors

  • Hwang, Jinseub;Kim, Dal Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.4
    • /
    • pp.349-359
    • /
    • 2015
  • We study a semiparametric Bayesian approach to small area estimation under a nested error linear regression model with area level covariate subject to measurement error. Consideration is given to radial basis functions for the regression spline and knots on a grid of equally spaced sample quantiles of covariate with measurement errors in the nested error linear regression model setup. We conduct a hierarchical Bayesian structural measurement error model for small areas and prove the propriety of the joint posterior based on a given hierarchical Bayesian framework since some priors are defined non-informative improper priors that uses Markov Chain Monte Carlo methods to fit it. Our methodology is illustrated using numerical examples to compare possible models based on model adequacy criteria; in addition, analysis is conducted based on real data.

Improvement of flood simulation accuracy based on the combination of hydraulic model and error correction model

  • Li, Li;Jun, Kyung Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.258-258
    • /
    • 2018
  • In this study, a hydraulic flow model and an error correction model are combined to improve the flood simulation accuracy. First, the hydraulic flow model is calibrated by optimizing the Manning's roughness coefficient that considers spatial and temporal variability. Then, an error correction model were used to correct the systematic errors of the calibrated hydraulic model. The error correction model is developed using Artificial Neural Networks (ANNs) that can estimate the systematic simulation errors of the hydraulic model by considering some state variables as inputs. The input variables are selected using parital mutual information (PMI) technique. It was found that the calibrated hydraulic model can simulate flood water levels with good accuracy. Then, the accuracy of estimated flood levels is improved further by using the error correction model. The method proposed in this study can be used to the flood control and water resources management as it can provide accurate water level eatimation.

  • PDF

A Study on the Analysis of Human-errors in Major Chemical Accidents in Korea (국내 화학사고의 휴먼에러 기반 분석에 관한 연구)

  • Park, Jungchul;Baek, Jong-Bae;Lee, Jun-won;Lee, Jin-woo;Yang, Seung-hyuk
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.1
    • /
    • pp.66-72
    • /
    • 2018
  • This study analyses the types, related operations, facilities, and causes of chemical accidents in Korea based on the RISCAD classification taxonomy. In addition, human error analysis was carried out employing different human error classification criteria. Explosion and fire were major accident types, and nearly half of the accidents occurred during maintenance operation. In terms of related facility, storage devices and separators were the two most frequently involved ones. Results of the human error-based analysis showed that latent human errors in management level are involved in many accidents as well as active errors in the field level. Action errors related to unsafe behavior leads to accidents more often compared with the checking behavior. In particular, actions missed and inappropriate actions were major problems among the unsafe behaviors, which implicates that the compliance with the work procedure should be emphasized through education/training for the workers and the establishment of safety culture. According to the analysis of the causes of the human error, the frequency of skill-based mistakes leading to accidents were significantly lower than that of rule-based and knowledge based mistakes. However, there was limitation in the analysis of the root causes due to limited information in the accident investigation report. To solve this, it is suggested to adopt advanced accident investigation system including the establishment of independent organization and improvement in regulation.

A Hybrid Error Generation Algorithm Using Confidence Intervals on Signal Constellation (신호 성상도 상의 신뢰구간을 활용한 하이브리드 오차 발생 알고리즘)

  • Oh, Kil Nam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.19-25
    • /
    • 2014
  • For effective updating a blind equalizer, we propose the adaptive algorithm having faster convergence speed required for initial equalization and satisfying low error level required in steady-state while having a gradual and reversible switching characteristics between initial stage and steady-state. The proposed method presents three criteria to distinguish the state of equalized signal, according to the criteria, differently updates the equalizer by using the hybrid error generation algorithm generating one of the three errors. Wherein as the criteria to determine the state of the equalized signal the confidence intervals on the signal constellation are used, an error is generated alternatively according to the confidence interval where equalizer output lies, and the equalizer is updated by, we got convergence quickly and to lower error level. In order to verify the usefulness of the proposed idea, simulation results were compared to the performance of conventional methods.

Methods and Sample Size Effect Evaluation for Wafer Level Statistical Bin Limits Determination with Poisson Distributions (포아송 분포를 가정한 Wafer 수준 Statistical Bin Limits 결정방법과 표본크기 효과에 대한 평가)

  • Park, Sung-Min;Kim, Young-Sig
    • IE interfaces
    • /
    • v.17 no.1
    • /
    • pp.1-12
    • /
    • 2004
  • In a modern semiconductor device manufacturing industry, statistical bin limits on wafer level test bin data are used for minimizing value added to defective product as well as protecting end customers from potential quality and reliability excursion. Most wafer level test bin data show skewed distributions. By Monte Carlo simulation, this paper evaluates methods and sample size effect regarding determination of statistical bin limits. In the simulation, it is assumed that wafer level test bin data follow the Poisson distribution. Hence, typical shapes of the data distribution can be specified in terms of the distribution's parameter. This study examines three different methods; 1) percentile based methodology; 2) data transformation; and 3) Poisson model fitting. The mean square error is adopted as a performance measure for each simulation scenario. Then, a case study is presented. Results show that the percentile and transformation based methods give more stable statistical bin limits associated with the real dataset. However, with highly skewed distributions, the transformation based method should be used with caution in determining statistical bin limits. When the data are well fitted to a certain probability distribution, the model fitting approach can be used in the determination. As for the sample size effect, the mean square error seems to reduce exponentially according to the sample size.

Calibration Techniques for Low-Level Current Measurement in the Characteristic Analysis System for Semiconductor Devices (저전류 측정을 위한 반도체 소자 특성 분석 시스템에서의 보상 기법)

  • Choi, In-Kyu;Park, Jong-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.111-117
    • /
    • 2002
  • In this paper, we proposed calibration techniques to improve measurement accuracy in the characteristic analysis system for semiconductor devices. Systematic errors can be reduced using proposed calibration techniques. Also, error current reduction procedures including leakage current and offset current are proposed to measure low-level current in pA level. Calibration parameters are calculated and stored by microprocessor using least-square fitting with measured sample data. During measurement time microprocessor corrects measured data using stored calibration parameters. Experimental results show that current measurement error above nA level is less than 0.02%. And they also show that current measurement in pA level can be performed with about 0.2% accuracy.

Implementation Techniques for the Seafarer's Human Error Assessment Model in a Merchant Ship: Practical Application to a Ship Management Company (상선 선원의 인적과실 평가 모델 구축기법: 선박관리회사 적용 실례)

  • Yim, Jeong-Bin
    • Journal of Navigation and Port Research
    • /
    • v.33 no.3
    • /
    • pp.181-191
    • /
    • 2009
  • In general, seafarer's human error is considered to be the preponderant muse for the majority of maritime transportation accidents in a merchant ship. The implementation techniques for Human Error Model (HEM) to assess possible accident risk by deck officers including captain, chief officer, second mate and third mate are described in this study. The scope of this work is focused to 642 deck officers in the ship management company with 130 vessels. At first, HEM can be constructed through the statistical analysis and expert's brainstorming process with human data to 642 deck officers. Then the variables $\upsilon$ for the human factors, the evaluation level EP($\upsilon$) for $\upsilon$, the weight $\alpha$ of $\upsilon$, and the title weight $\beta$ of each deck officers can be decided. In addition, through the analysis of ship's accident history, the accident causation ratios by human error ${\gamma}_H$ and by external error ${\gamma}_B$ can be found as 0.517(51.7%) and 0.483(48.3%), respectively. The correlation coefficients to $\upsilon$ are also shown significant for a 95% confidence interval (p < 0.05) for each coefficient. And the validity of HEM is also surveyed by the analysis of normal probability distribution of risk level RL to each deck officer.

Analysis of Error Tolerance in Sonar Array by the Genetic Algorithm (유전자 알고리즘에 의한 소나 배열 소자의 허용오차 분석)

  • 양수화;김형동
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.6
    • /
    • pp.496-504
    • /
    • 2003
  • In this paper, the error tolerance of each array element to ensure a given specified error level for the array pattern is analyzed using the Genetic Algorithm. In the conventional deterministic method for synthesis of sonar way problems the computational resource required in the simulation grows rapidly as the number of way elements increases. To alleviate this numerical inefficiency, the Monte-Carlo method may be considered as an alternative technique for array syntheses. However, it is difficult to apply the method to the synthesis of array patterns because of its relatively lower accuracy in spite of moderate computational complexity. A new analysis method for estimating error tolerances in sonar arrays is Proposed since the Genetic Algorithm has significant promise to efficiently solve way synthesis problems. Through several numerical tests in linear and planar arrays, it is demonstrated that the proposed method can provide accurate results for error tolerances of sonar arrays.

Error Control Policy for Initial Value Problems with Discontinuities and Delays

  • Khader, Abdul Hadi Alim A.
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.4
    • /
    • pp.665-684
    • /
    • 2008
  • Runge-Kutta-Nystr$\"{o}$m (RKN) methods provide a popular way to solve the initial value problem (IVP) for a system of ordinary differential equations (ODEs). Users of software are typically asked to specify a tolerance ${\delta}$, that indicates in somewhat vague sense, the level of accuracy required. It is clearly important to understand the precise effect of changing ${\delta}$, and to derive the strongest possible results about the behaviour of the global error that will not have regular behaviour unless an appropriate stepsize selection formula and standard error control policy are used. Faced with this situation sufficient conditions on an algorithm that guarantee such behaviour for the global error to be asympotatically linear in ${\delta}$ as ${\delta}{\rightarrow}0$, that were first derived by Stetter. Here we extend the analysis to cover a certain class of ODEs with low-order derivative discontinuities, and the class of ODEs with constant delays. We show that standard error control techniques will be successful if discontinuities are handled correctly and delay terms are calculated with sufficient accurate interpolants. It is perhaps surprising that several delay ODE algorithms that have been proposed do not use sufficiently accurate interpolants to guarantee asymptotic proportionality. Our theoretical results are illustrated numerically.

A Feasible Approach for the Unified PID Position Controller Including Zero-Phase Error Tracking Performance for Direct Drive Rotation Motor

  • Kim, Joohn-Sheok
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.74-84
    • /
    • 2009
  • The design and implementation of a high performance PID (Proportional Integral & Differential) style controller with zero-phase error tracking property is considered in this article. Unlike a ball screw driven system, the controller in a direct drive system should provide a high level of tracking performance while avoiding the problems due to the absence of the gear system. The stiff mechanical element in a direct drive system allows high precise positioning capability, but relatively high tracking ability with minimal position error is required. In this work, a feasible position controller named 'Unified PID controller' is presented. It will be shown that the function of the closed position loop can be designed into unity gain system in continuous time domain to provide minimal position error. The focus of this work is in two areas. First, easy gain tunable PID position controller without speed control loop is designed in order to construct feasible high performance drive system. Second, a simple but powerful zero phase error tracking strategy using the pre-designed function of the main control loop is presented for minimal tracking error in all operating conditions. Experimental results with a s-curve based position pattern commonly used in industrial field demonstrate the feasibility and effective performance of the approach.