• Title/Summary/Keyword: Error Variance

Search Result 728, Processing Time 0.024 seconds

Interval Estimation for Sum of Variance Components in a Simple Linear Regression Model with Unbalanced Nested Error Structure

  • Park, Dong-Joon
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.361-370
    • /
    • 2003
  • Those who are interested in making inferences concerning linear combination of valiance components in a simple linear regression model with unbalanced nested error structure can use the confidence intervals proposed in this paper. Two approximate confidence intervals for the sum of two variance components in the model are proposed. Simulation study is peformed to compare the methods. The methods are applied to a numerical example and recommendations are given for choosing a proper interval.

Confidence intervals on variance components in multiple regression model with one-fold nested error strucutre (중첩오차를 갖는 중회귀모형에서 분산의 신뢰구간)

  • 박동준
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.495-498
    • /
    • 1996
  • Regression model with nested error structure interval estimations about variability on different stages are proposed. This article derives an approximate confidence interval on the variance in the first stage and an exact confidence interval on the variance in the second stage in two stage regression model. The approximate confidence interval is based on Ting et al. (1990) method. Computer simulation is provided to show that the approximate confidence interval maintains the stated confidence coefficient.

  • PDF

A Note on Disturbance Variance Estimator in Panel Data with Equicorrelated Error Components

  • Seuck Heun Song
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.2
    • /
    • pp.129-134
    • /
    • 1995
  • The ordinary least square estimator of the disturbance variance in the pooled cross-sectional and time series regression model is shown to be asymptotically unbiased without any restrictions on the regressor matrix when the disturbances follow an equicorrelated error component models.

  • PDF

Multi-Level Rotation Sampling Designs and the Variances of Extended Generalized Composite Estimators

  • Park, You-Sung;Park, Jai-Won;Kim, Kee-Whan
    • Proceedings of the Korean Association for Survey Research Conference
    • /
    • 2002.11a
    • /
    • pp.255-274
    • /
    • 2002
  • We classify rotation sampling designs into two classes. The first class replaces sample units within the same rotation group while the second class replaces sample units between different rotation groups. The first class is specified by the three-way balanced design which is a multi-level version of previous balanced designs. We introduce an extended generalized composite estimator (EGCE) and derive its variance and mean squared error for each of the two classes of design, cooperating two types of correlations and three types of biases. Unbiased estimators are derived for difference between interview time biases, between recall time biases, and between rotation group biases. Using the variance and mean squared error, since any rotation design belongs to one of the two classes and the EGCE is a most general estimator for rotation design, we evaluate the efficiency of EGCE to simple weighted estimator and the effects of levels, design gaps, and rotation patterns on variance and mean squared error.

  • PDF

Noise reduction method using a variance map of the phase differences in digital holographic microscopy

  • Hyun-Woo Kim;Myungjin Cho;Min-Chul Lee
    • ETRI Journal
    • /
    • v.45 no.1
    • /
    • pp.131-137
    • /
    • 2023
  • The phase reconstruction process in digital holographic microscopy involves a trade-off between the phase error and the high-spatial-frequency components. In this reconstruction process, if the narrow region of the sideband is windowed in the Fourier domain, the phase error from the DC component will be reduced, but the high-spatial-frequency components will be lost. However, if the wide region is windowed, the 3D profile will include the high-spatial-frequency components, but the phase error will increase. To solve this trade-off, we propose the high-variance pixel averaging method, which uses the variance map of the reconstructed depth profiles of the windowed sidebands of different sizes in the Fourier domain to classify the phase error and the high-spatial-frequency components. Our proposed method calculates the average of the high-variance pixels because they include the noise from the DC component. In addition, for the nonaveraged pixels, the reconstructed phase data created by the spatial frequency components of the widest window are used to include the high-spatialfrequency components. We explain the mathematical algorithm of our proposed method and compare it with conventional methods to verify its advantages.

An Adaptive Algorithm for the Quantization Step Size Control of MPEG-2

  • Cho, Nam-Ik
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.138-145
    • /
    • 1997
  • This paper proposes an adaptive algorithm for the quantization step size control of MPEG-2, using the information obtained from the previously encoded picture. Before quantizing the DCT coefficients, the properties of reconstruction error of each macro block (MB) is predicted from the previous frame. For the prediction of the error of current MB, a block with the size of MB in the previous frame are chosen by use of the motion vector. Since the original and reconstructed images of the previous frame are available in the encoder, we can calculate the reconstruction error of this block. This error is considered as the expected error of the current MB if it is quantized with the same step size and bit rate. Comparing the error of the MB with the average of overall MBs, if it is larger than the average, small step size is given for this MB, and vice versa. As a result, the error distribution of the MB is more concentrated to the average, giving low variance and improved image quality. Especially for the low bit application, the proposed algorithm gives much smaller error variance and higher PSNR compared to TM5 (test model 5).

  • PDF

Measurement Error Variance Estimation Based on Subsample Re-measurements (이중 추출 자료를 이용한 측정오차분산의 추정)

  • 허순영
    • Proceedings of the Korean Association for Survey Research Conference
    • /
    • 2003.06a
    • /
    • pp.34-41
    • /
    • 2003
  • In many cases, the measurement error variances may be functions of the unknown true values or related covariates. This paper develops estimators of the parameters of a linear measurement error variance function based on wi thin-unit sample variaoces. This paper devotes to: (1) define measurement error scale factor $\delta$: (2) develop estimators of the parameters of the 1inear measurement error variance function under stratified multistage sampling design and small error conditions; (3) use propensity methods to adjust survey weights to account for possible selection effects at the replicate level. The proposed methods are applied to medical examination data from the U S Third National Health and Nutrition Examination Survey(NHANES III)

  • PDF

Asymptotic Properties of the Disturbance Variance Estimator in a Spatial Panel Data Regression Model with a Measurement Error Component

  • Lee, Jae-Jun
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.3
    • /
    • pp.349-356
    • /
    • 2010
  • The ordinary least squares based estimator of the disturbance variance in a regression model for spatial panel data is shown to be asymptotically unbiased and weakly consistent in the context of SAR(1), SMA(1) and SARMA(1,1)-disturbances when there is measurement error in the regressor matrix.

Variance components for two-way nested design data

  • Choi, Jaesung
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.3
    • /
    • pp.275-282
    • /
    • 2018
  • This paper discusses the use of projections for the sums of squares in the analyses of variance for two-way nested design data. The model for this data is assumed to only have random effects. Two different sizes of experimental units are required for a given experimental situation, since nesting is assumed to occur both in the treatment structure and in the design structure. So, variance components are coming from the sources of random effects of treatment factors and error terms in different sizes of experimental units. The model for this type of experimental situation is a random effects model with more than one error terms and therefore estimation of variance components are concerned. A projection method is used for the calculation of sums of squares due to random components. Squared distances of projections instead of using the usual reductions in sums of squares that show how to use projections to estimate the variance components associated with the random components in the assumed model. Expectations of quadratic forms are obtained by the Hartley's synthesis as a means of calculation.