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A Note on Disturbance Variance Estimator in Panel Data with
Equicorrelated Error Components

Seuck Heun Songl

Abstract

The ordinary least square estimator of the disturbance variance in the pooled
cross-sectional and time series regression model is shown to be asymptotically
unbiased without any restrictions on the regressor matrix when the disturbances
follow an equicorrelated error component models.

1. Introduction

Let yi be an observation on the dependent variable for the i-th cross sectional unit
(firms, individuals or countries) for the ¢-th time period, x ji: be an observation on the j~th

nonstochastic regressor for the ith cross sectional unit for the ¢th time period. Then the
model we are concerned with is

k
yie = 21 Bixjie + uie, i=12-N and t=12 - ,T. (1.1)
J

The model (1.1) can be written in matrix notation as
y = XB+u, 1.2)

where y is the ( NT'X1)-observation vector, X is ( NT'Xk)-design matrix, the ( kx1)-vector
B contains the unknown regression coefficients to be estimated, and u is a ( NTx1)-vector
of disturbances. Both, N and T are assumed to be larger than k.

For the pooled cross-sectional and time series regression models with two-way error
component disturbances considered by Wallace and Husaian (1969), Nerlove (1971), Amemiya
(1971), Swamy and Arora (1972), Hsiao (1986) and the recent survey by Baltagi and Raj
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(1992), the disturbances in (1.1) take the following form:

Uic = Wi + M +vy, =12~ ,N and t = 1,2, T, (1.3)

where the W denote the individual specific effects which are assumed to be iid. (0, 02) and
A denote the time-period effects which are iid. (0,0%). The Vi are the remainder
disturbances which are also assumed to be iid. (0, 0%). The Hi's and the Vi's are

independent of each other, ie. 6% = 0% + 0f + 0% .
Under these assumptions, the (NT xNT)-disturbance covariance matrix can be written as
E(uw) =020=0i(Un® 1717 )+ 0f (inty ®Ir) +0%Inr, (1.4)

where In is an (NN XN)-identity matrix, 7 is a (7 x1)-vector of ones and ® denotes

the kronecker product.

In this model with disturbances in (1.3), it is well known that the generalized least square
(GLS)-based estimator of 02,

2 _ 1 ~r - 1 _ ’ _
where B = (X’ VX)X’ V'l with V=0%Q is a unbiased estimator. However, in the
practice V is usually unknown, so that 2 cannot be calculated. Taking the ordinary least

square (OLS)-based estimator of 02 instead of (15),

s* = N’Il‘—k (0w = Nyl«_k (y-XB) (y-XxB), (1.6)

where B=(X’ X)'X’ y, is in general a biased estimator of 02 , when @ InT . See

Moulton (1986), for several examples on the extent of this bias in empirical applications.
However, Recently Baltagi and Kraemer (1994) and Song (1994, 1995) have shown the

asymptotic unbiasedness of S? for the several error component disturbances. In this note, [

will show the asymptotic unbiasedness of S® if u follows the two-way error component
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model with equicorrelated case (see for several examples, Baltagi (1993)).

2. Main Results

We can generalize the two-way error component model to the equicorrelated case. It
assumes that the remainder disturbances Vi in (1.3) are generated by a equicorrelated

process. In this case the disturbance covariance matrix is given by
02Qp0 = 0(IN®LTLY) + of(Lyly ®I7) + 02 (In®V), @1

where Vi is the covariance matrix of order 7T,
4

w

Vi = 2.2)

-]
o

e =D
he

where p is an unknown scalar and V) nonsingular, which requires 7:_11 <p<1l.

From Watson (1955), Sathe and Vinod (1974), Neudecker (1977, 1978), Dufour (1986, 1988),
Kraemer (1991) and Kiviet and Kraemer (1992), we have the inequalities:

mean of NT-k mean of NT-k
0 < smallest characteristic < E(S?/02) < greatest characteristic < NT/(NT-k) ,

roots of Qgo roots of Qgo

2.3)
2
which implies that the upper bound for % tends to one as N and T— @, It remains to

u

show that the lower bound tends to one as well.
To derive the characteristic roots of 05Qg¢ in (2.1) which are given by the following

results:
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Lemma (2.1) : (Horn and Johnson 1985, p. 181)

Let A, B be (TxT)-Hermitian and let the characteristic roots A:(A), Xi(B) and
Li(A+B) be arranged in decreasing order Amax = A2 A2 2 = 2Ar =Amin. For each

i=1,2,-,T we have

X;(A+B) < XI(A) + Xmax(B). (24)

We use this lemma with A4 = 062(Ix®17l7) + 03(inty’ ®I7) and B =0i(In®V)) .
According to Nerlove (1971), first we can derive the characteristic roots and vector of

0I2I(IN® L7l )+ 0t (Lyin’ ®Ir). These characteristic roots turn out to be 0 with
multiplicity (N-1)(T-1), Toi+Nof with multiplicity 1, No% with mult‘xpncity (T-1) and

Tol with multiplicity (N-1). It can be shown that the largest characteristic root is
M maxc[ 0 (Iy® L7t ) +0f (Lnty’ ®Ip] = Tof + Nof . (25)

Since the characteristic roots of a kronecker product of matrix are given by the product of
the characteristic roots of these matrices (see Horn and Johnson (1990), p. 245), we obtain the

characteristic roots of 02 (In®V1) as the products of the characteristic roots of V1 and the
characteristic roots of In. Since the characteristic roots of Iy are 1's and according to

Graybill (1983, p. 122), the characteristic roots of Vi are given by

Moo= (1 +(T-1)p)
A2 = A3 = = = Ar = (1-p), (2.6)
where A; 2 Az2=2A3= « =Xk . In addition, it can be easily shown that
Mmax [05(In ® V)] = o3[1+(T-1)p 1. 2.7)

Therefore the characteristic roots of 6%Qgg in (21) can be obtained from the lemma (2.1),
and the equations (2.5) and (2.7) :
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0%Qro = OE(IN®LTLT) + 0f(inln’ ®IT) + 05 (INn®V))
S MIE(Un® LTl )+ 0f (Lntny’ ®I7] + M max [0F (IN®V )]

< oiT+oi N+l [1+(T-1)p] ) (2.8)

A lower bound for the mean of the NT-k smallest characteristic roots of Q go may be

derived from (2.3) as follows :

1 NT-k 1 NT

- k
NT-k Z Mk = TNT R (le“ Z%ki)

1 -

1 k

NT K
NT_k - NT__k {T+N+1+(T_1)p} (2.9)

from (2.8). Obviously, the first term on the right hand side of (2.9) tends to one and the

second term tends to zero as N and T— ®©. Thus S? is asymptotically unbiased for 0 ,
regardless of the regressor matrix X. In summary, in this note it can be shown that the

OLS-based estimator for disturbance variance, S 2 is asymptotically unbiased for the two-way
error component model with equicorrelated time effects irrespective of any restrictions on
the regressor matrix X.
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