• Title/Summary/Keyword: Error Modeling

Search Result 1,640, Processing Time 0.029 seconds

Modeling and Compensatory Control of Thermal Error for the Machine Orgin of Machine Tools (공작기계 원점 열변형오차의 모델링 및 보상제어)

  • 정성종
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.4
    • /
    • pp.19-28
    • /
    • 1999
  • In order to control thermal deformation of the machine origin of machine tools a empirical model and a compensation system have been developed, Prior to empirical modeling the volumetric error considering shape errors and joint errors of slides is formulated through the homogeneous transformation matrix (HTM) and kinematic chain. Simulation results of the HTM method show that the thermal error of the machine origin is more critical than position-dependent errors. In order to make a stable and effective software error compensation system the GMDH (Group Method of Data Handling) models are constructed to estimate the thermal deformation of the machine origin by measuring deformation data and temperature data. A test bar and gap sensors are used to measure the deformation data. In order to compensate the estimated error the work origin shift method is developed by implementing a digital I/O interface board between a CNC controller and an IBM PC. The method shifts the work origin as much as the amounts which are calculated by the pre-established thermal error model. The experiment results for a vertical machining center show that the thermal deformation of the machine origin is reduced within $\pm$5$mu extrm{m}$.

  • PDF

An Extended Kalman Filter Robust to Linearization Error (선형화 오차에 강인한 확장칼만필터)

  • Hong, Hyun-Su;Lee, Jang-Gyu;Park, Chan-Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.2
    • /
    • pp.93-100
    • /
    • 2006
  • In this paper, a new-type Extended Kalman Filter (EKF) is proposed as a robust nonlinear filter for a stochastic nonlinear system. The original EKF is widely used for various nonlinear system applications. But it is fragile to its estimation errors because they give rise to linearization errors that affect the system mode1 as the modeling errors. The linearization errors are nonlinear functions of the estimation errors therefore it is very difficult to obtain the accurate error covariance of the EKF using the linear form. The inaccurately estimated error covariance hinders the EKF from being a sub-optimal estimator. The proposed filter tries to obtain the upper bound of the error covariance tolerating the uncertainty of the error covariance instead of trying to obtain the accurate one. It treats the linearization errors as uncertain modeling errors that can be handled by the robust linear filtering. In order to be more robust to the estimation errors than the original EKF, the proposed filter minimizes the upper bound like the robust linear filter that is applied to the linear model with uncertainty. The in-flight alignment problem of the inertial navigation system with GPS position measurements is a good example that the proposed robust filter is applicable to. The simulation results show the efficiency of the proposed filter in the robustness to initial estimation errors of the filter.

Concentration Error Assessment by Comparison of Solar Flux Measurement and Modeling (집광 열유속 측정과 모델링의 비교를 통한 집광 오차 평가)

  • Chai, Kwan-Kyo;Yoon, Hwan-Ki;Lee, Hyun-Jin;Lee, Seong-Uk;Kim, Si-Seok
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.3
    • /
    • pp.82-90
    • /
    • 2013
  • Concentration errors critically affect the performance of solar concentrator, so their evaluation is important to the concentrated solar power technology. However, the evaluation is very challenging because error sources are various and not easy to measure individually. Therefore, the integrated effect of concentration errors is often more interesting and useful for large-scale applications. In the present work, we analytically investigate and classify various concentration error sources and then explain that the effect of various concentration errors can be represented in terms of a root mean square value of reflector surface slope error. We present an indirect approach to assessing the reflector surface slope error by comparing solar flux measurement data with modeling calculations. We apply the approach for solar furnaces with different thermal capacity and investigate its advantages and disadvantages.

Performance Analysis of Low-Order Surface Methods for Compact Network RTK: Case Study

  • Song, Junesol;Park, Byungwoon;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.1
    • /
    • pp.33-41
    • /
    • 2015
  • Compact Network Real-Time Kinematic (RTK) is a method that combines compact RTK and network RTK, and it can effectively reduce the time and spatial de-correlation errors. A network RTK user receives multiple correction information generated from reference stations that constitute a network, calculates correction information that is appropriate for one's own position through a proper combination method, and uses the information for the estimation of the position. This combination method is classified depending on the method for modeling the GPS error elements included in correction information, and the user position accuracy is affected by the accuracy of this modeling. Among the GPS error elements included in correction information, tropospheric delay is generally eliminated using a tropospheric model, and a combination method is then applied. In the case of a tropospheric model, the estimation accuracy varies depending on the meteorological condition, and thus eliminating the tropospheric delay of correction information using a tropospheric model is limited to a certain extent. In this study, correction information modeling accuracy performances were compared focusing on the Low-Order Surface Model (LSM), which models the GPS error elements included in correction information using a low-order surface, and a modified LSM method that considers tropospheric delay characteristics depending on altitude. Both of the two methods model GPS error elements in relation to altitude, but the second method reflects the characteristics of actual tropospheric delay depending on altitude. In this study, the final residual errors of user measurements were compared and analyzed using the correction information generated by the various methods mentioned above. For the performance comparison and analysis, various GPS actual measurement data were collected. The results indicated that the modified LSM method that considers actual tropospheric characteristics showed improved performance in terms of user measurement residual error and position domain residual error.

Error Synthesis Modeling and Compensation Algorithm of a 5-Axis CNC Machine Tool (5축 CNC 공작기계의 오차합성모델링 및 보정 알고리즘)

  • Yang, Seung-Han;Lee, Chul-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.122-129
    • /
    • 1999
  • A 5-axis CNC machine tool is more useful compared with a 3-axis machine tool, because the position and the orientation of a tool tip can be controlled simultaneously. Unlike the 3-axis machine tool, the 5-axis machine tool has the volumetric position error and volumetric orientation error due to the quasi-static error of each machine tool joint which is a major source of machined part error. So, the generalized error synthesis model of the 5-axis CNC machine tool was developed to predict and to compensate for the volumetric position error and the volumetric orientation error. It was proposed that a compensation algorithm to correct simultaneously the volumetric position error and the volumetric orientation error of the 5-axis CNC machine by error inverse kinematic.

  • PDF

Video-Dissolve Detection using Characteristics of Neighboring Scenes (이웃 장면들의 특성을 이용한 비디오 디졸브 검출)

  • 원종운;최재각;박철현;김범수;곽동민;오상근;박길흠
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.4
    • /
    • pp.504-512
    • /
    • 2003
  • In this paper, we propose a new adaptive dissolve detection method based on the analysis of a dissolve modeling error which is the difference between an ideally modeled dissolve curve with no correlation and an actual dissolve curve including a correlation. The proposed dissolve detection method consists of two steps. First, candidate dissolve regions are extracted using the characteristics of a downward convex parabola, then each candidate region is verified based oil the dissolve modeling error. If the dissolve modeling error for a candidate region is less than a threshold defined by the target modeling error with a target correlation, the candidate region is determined as a resolve region with a lower correlation than the target correlation. The threshold is adaptively determined based on the variances between the candidate regions and the target correlation. By considering the correlation between neighbor scenes, the proposed method is able to be a semantic scene-change detector. The proposed method was tested on various types of data and its performance proved to be more accurate and reliable regardless of variation of variance of test sequences when compared with other commonly use methods.

Small-Signal Modeling of Gate-All-Around (GAA) Junctionless (JL) MOSFETs for Sub-millimeter Wave Applications

  • Lee, Jae-Sung;Cho, Seong-Jae;Park, Byung-Gook;Harris, James S. Jr.;Kang, In-Man
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.2
    • /
    • pp.230-239
    • /
    • 2012
  • In this paper, we present the radio-frequency (RF) modeling for gate-all-around (GAA) junctionless (JL) MOSFETs with 30-nm channel length. The presented non-quasi-static (NQS) model has included the gate-bias-dependent components of the source and drain (S/D) resistances. RF characteristics of GAA junctionless MOSFETs have been obtained by 3-dimensional (3D) device simulation up to 1 THz. The modeling results were verified under bias conditions of linear region (VGS = 1 V, VDS = 0.5 V) and saturation region (VGS = VDS = 1 V). Under these conditions, the root-mean-square (RMS) modeling error of $Y_{22}$-parameters was calculated to be below 2.4%, which was reduced from a previous NQS modeling error of 10.2%.

A Method of Intonation Modeling for Corpus-Based Korean Speech Synthesizer (코퍼스 기반 한국어 합성기의 억양 구현 방안)

  • Kim, Jin-Young;Park, Sang-Eon;Eom, Ki-Wan;Choi, Seung-Ho
    • Speech Sciences
    • /
    • v.7 no.2
    • /
    • pp.193-208
    • /
    • 2000
  • This paper describes a multi-step method of intonation modeling for corpus-based Korean speech synthesizer. We selected 1833 sentences considering various syntactic structures and built a corresponding speech corpus uttered by a female announcer. We detected the pitch using laryngograph signals and manually marked the prosodic boundaries on recorded speech, and carried out the tagging of part-of-speech and syntactic analysis on the text. The detected pitch was separated into 3 frequency bands of low, mid, high frequency components which correspond to the baseline, the word tone, and the syllable tone. We predicted them using the CART method and the Viterbi search algorithm with a word-tone-dictionary. In the collected spoken sentences, 1500 sentences were trained and 333 sentences were tested. In the layer of word tone modeling, we compared two methods. One is to predict the word tone corresponding to the mid-frequency components directly and the other is to predict it by multiplying the ratio of the word tone to the baseline by the baseline. The former method resulted in a mean error of 12.37 Hz and the latter in one of 12.41 Hz, similar to each other. In the layer of syllable tone modeling, it resulted in a mean error rate less than 8.3% comparing with the mean pitch, 193.56 Hz of the announcer, so its performance was relatively good.

  • PDF

Estimating of water pressure to avoid hydraulic fracturing in water pressure test

  • Amnieh, Hassan Bakhshandeh;Masoudi, Majid
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.171-177
    • /
    • 2017
  • Water pressure test operation is used before the grouting to determine the rate of penetrability, the necessity and estimations related to grouting, by the penetration of water into the borehole. One of the parameters which have the highest effect is pressure of water penetration since the application of excessive pressure causes the hydraulic fracture to occur in the rock mass, and on the other hand, it must not be so small that prevents from seeing mechanical weaknesses and the rate of permeability. Mathematical modeling is used for the first time in this study to determine the optimum pressure. Thus, the joints that exist in the rock mass are simulated using cylindrical shell model. The joint surroundings are also modeled through Pasternak environment. To obtain equations governing the joints and the surroundings, energy method is used accompanied by Hamilton principle and an analytical solution method is used to obtain the maximum pressure. In order to validate the modeling, the pressure values obtained by the model were used in the sites of Seymareh and Aghbolagh dams and the relative error rates were measured considering the differences between calculated and actual pressures. Modeling in the sections of Seymareh dam showed 4.75, 3.93, 4.8 percent error rates and in the sections of Aghbolagh dam it rendered the values of 22.43, 5.22, 2.6 percent. The results indicate that this modeling can be used to estimate the amount of pressure for hydraulic fracture in water pressure test, to predict it and to prevent it.