• Title/Summary/Keyword: Error Modeling

Search Result 1,654, Processing Time 0.035 seconds

An Improved Frequency Modeling Corresponding to the Location of the Anjok of the Gayageum (가야금 안족의 위치에 따른 개선된 주파수 모델링)

  • Kwon, Sundeok;Cho, Sangjin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.2
    • /
    • pp.146-151
    • /
    • 2014
  • This paper analyzes the previous Anjok model of the Gayageum and describes a method to improve the frequency modeling based on previous model. In the previous work, relation between the fundamental frequency and Anjok's location on the body is assumed as an exponential function and these frequencies are integrated by a first-order leaky integrator. Finally, a parameter of the formula to calculate the fundamental frequency is obtained by applying integrated frequencies to the linear regression. This model shows 2.5 Hz absolute deviation on average and has maximum error 7.75 Hz for the low fundamental frequencies. In order to overcome this problem, this paper proposes that the Anjok's locations are grouped according to the rate of error increase and linear regression is applied to each group. To find the optimal parameter, the RMSE(Root Mean Square Error) between measured and calculated fundamental frequencies is used. The proposed model shows substantial reduction in errors, especially maximum three times.

Volumetric Error Identification for NC Machine Tools Using the Reference Artifact (기준물을 이용한 NC 공작기계의 체적오차 규명)

  • Kim, Gyeong-Don;Jeong, Seong-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2899-2908
    • /
    • 2000
  • Methodology of volumetric error identification is presented to improve the accuracy of NC machine tools by using a reference artifact and a touch trigger probe. Homogeneous transformation matrix and kinematic chain are used for modeling the geometric and thermal errors of a three-axis vertical machining center. The reference artifact is designed and fabricated to identify the model parameters by machine tool metrology. Parameters in the error model are able to be identified and updated by direct measurement of the reference artifact on the machine tool under the actual conditions which include the thermal interactions of error sources. The proposed method can speed up and simplify volumetric error identification processes.

The Performance evaluation of the Reed-Solomon Product Code(RSPC) (Reed-Solomon Product Code의 에러 정정 능력 평가 방법)

  • Hwang, Sung-Hee;Lee, Yoon-Woo;Han, Sung-Hyu;Ryu, Sang-Hyun;Shin, Dong-Ho;Park, In-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2496-2498
    • /
    • 2001
  • 광 디스크 channel상에서 RSPC의 error correction capability를 확률적인 계산 방법으로 계산하는 데는 많은 어려움이 있다. 그 이유는 바로 광 디스크 channel이 burst error channel이기 때문인데, 이 burst error를 어떻게 다루는 가에 따라 그 error correction capability는 사뭇 달라진다. 이 논문에서는 Sony의 dust error distribution[1] 아래에서 4-state Morkov Chain[2]로 modeling하고 그 결과를 가지고 burst error를 channel의 특성과 ECC format의 특성에 맞게 제어할 수 있는 확률적인 계산방법을 소개하고 그것을 simulation하고자 한다.

  • PDF

Multi-channel ANC System Modeling for Reducing KTX Interior Noise (고속철도 실내소음 저감을 위한 다중채널 ANC 시스템 모델링)

  • Jang, Hyeon-Seok;Kim, Sae-Han;Lee, Tae-Oh;Koo, Kyung-Wan;Lee, Kwon-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.1069-1076
    • /
    • 2012
  • We use largely two methods, how to control the noise of the KTX, they are the passive noise control method and the active noise control method. The passive noise control has been used in a variety of ways since the KTX opening day, but lately it has shown the technical limitations by being dropped sharply. So, it is getting important to conduct the research about ANC that is able to reduce the ambient noise when the environmental-factor changes and be installed easily. To reduce a three-dimensional closed-space sound field like a car of a high-speed rail is hard to do using single channel ANC control system. Therefore we have to model the paths of the noise exactly for reducing the noise. And the control speakers and the error mics should be designed for optimal position. In this paper, we designed the transfer functions for modeling the noise paths under the influence of the distance between control speakers & error mics and primary noise speaker in TEST-BED where there is modeled as actual interior of KTX. We have made the modeling and the simulations of interior environment of KTX car by using three frequency bands of 120Hz, 280Hz, 360Hz. After the modeling, we compared the performance of active noise control and also we analyzed what to affect with difference in distance. After comparing of the performance using Pure Tone 120Hz, 280Hz, 360Hz at each modeling and then we simulated ANC for KTX's interior noise which we measured really and analyzed.

A Study on Calculation of Interior Construction Area Using 3D Modeling Program (3D 모델링 프로그램을 활용한 인테리어 공사면적 산출에 대한 연구)

  • Ha, Seung-Beom
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.531-537
    • /
    • 2023
  • Interior construction is required to estimate the quantity of material and the cost expected from 2D drawing in design phase and look for the reasonable method of work. Therefore, exact estimation for quantity and budgeting are very important processes, as a measure of judging the profitability of interior construction. These processes are mostly based on 2D drawing, so time and experienced staff are required. Error and omission can occur because the experienced staff also calculates the area using 2D based drawing. Interior market is currently based on 3D modeling from planning to final design. Accordingly, estimating quantity based on 3D modeling is emerging as a way of reducing error and omission. This paper will present the methodology on calculating area, the basic element of estimating quantity based on 3D Modeling in interior field.

A Study of an OMM System for Machined Spherical form Using the Volumetric Error Calibration of Machining Center (머시닝센터의 체적오차 보상을 통한 구면 가공형상 측정 OMM시스템 연구)

  • Kim, Sung-Chung;Kim, Ok-Hyun;Lee, Eung-Suk;Oh, Chang-Jin;Lee, Chan-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.98-105
    • /
    • 2001
  • The machining accuracy is affected by geometric, volumetric errors of the machine tools. To improve the product quality, we need to enhance the machining accuracy of the machine tools. To this point of view, measurement and inspection of finished part as error analysis of machine tools ahas been studied for last several decades. This paper suggests the enhancement method of machining accuracy for precision machining of high quality metal reflection mirror or optics lens, etc. In this paper, we study 1) the compensation of linear pitch error with NC controller compensation function using laser interferometer measurement, 2) the method for enhancing the accuracy of NC milling machining by modeling and compensation of volumetric error, 3) the spherical surface manufacturing by modeling and compensation of volumetric error of the machine tool, 4) the system development of OMM without detaching work piece from a bed of machine tool after working, 5) the generation of the finished part profile by OMM. Furthermore, the output of OMM is compared with that of CMM, and verified the feasibility of the measurement system.

  • PDF

Performance Evaluation of Radial Error of a Rotary Table at Five-axis Machine Tool (5축 공작기계에서 회전 테이블의 반경 오차 성능 평가)

  • Lee, Kwang-Il;Yang, Seung-Han
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.208-213
    • /
    • 2012
  • In this paper, the radial error of a rotary table at five-axis machine tool is evaluated by utilizing ISO 230-2 and estimation method using double ball-bar. The geometric error of a rotary table is defined as position dependent geometric errors or position independent geometric errors according to their physical character. Then estimation method of geometric errors using double ball-bar is simply summarized including measurement path, parametric modeling and least squares approach. To estimate representative radial error, offset error, set-up error which affect to the double ball-bar data, mean value of measured data including CCW/CW-direction are used at estimation process. Radial errors are separated from measured data and used for evaluation with ISO 230-2. Finally, suggested evaluation method is applied to a rotary table at five-axis machine tool and its result is analyzed to improve the accuracy of the rotary table.

A Study on Modeling of Search Space with GA Sampling

  • Banno, Yoshifumi;Ohsaki, Miho;Yoshikawa, Tomohiro;Shinogi, Tsuyoshi;Tsuruoka, Shinji
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.86-89
    • /
    • 2003
  • To model a numerical problem space under the limitation of available data, we need to extract sparse but key points from the space and to efficiently approximate the space with them. This study proposes a sampling method based on the search process of genetic algorithm and a space modeling method based on least-squares approximation using the summation of Gaussian functions. We conducted simulations to evaluate them for several kinds of problem spaces: DeJong's, Schaffer's, and our original one. We then compared the performance between our sampling method and sampling at regular intervals and that between our modeling method and modeling using a polynomial. The results showed that the error between a problem space and its model was the smallest for the combination of our sampling and modeling methods for many problem spaces when the number of samples was considerably small.

  • PDF

The Study on Pattern Dependent Modeling of ILD CMP (패턴에 따른 층간절연막 CMP의 모델리에 관한 연구)

  • 홍기식;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1121-1124
    • /
    • 2001
  • In this study, we verify th effects of pattern density on interlayer dielectric chemical mechanical polishing process based on the analysis of Preston's equation and confirm this analysis by several experiments. Appropriate modeling equation, transformed form Preston's equations used in glass polishing, will be suggested and described the effects of this modeling during pattern wafer ILD CMP. Results indicate that the modeling is well agreed to middle density structure of the die in pattern wafer, but has some error in low and high density structure of the die. Actually, the die used in Fab, was designed to have a appropriate density, therefore this modeling will be suitable for estimating the results of ILD CMP.

  • PDF

A Study on Dynamic Modeling of Photovoltaic Power Generator Systems using Probability and Statistics Theories (확률 및 통계이론 기반 태양광 발전 시스템의 동적 모델링에 관한 연구)

  • Cho, Hyun-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.1007-1013
    • /
    • 2012
  • Modeling of photovoltaic power systems is significant to analytically predict its dynamics in practical applications. This paper presents a novel modeling algorithm of such system by using probability and statistic theories. We first establish a linear model basically composed of Fourier parameter sets for mapping the input/output variable of photovoltaic systems. The proposed model includes solar irradiation and ambient temperature of photovoltaic modules as an input vector and the inverter power output is estimated sequentially. We deal with these measurements as random variables and derive a parameter learning algorithm of the model in terms of statistics. Our learning algorithm requires computation of an expectation and joint expectation against solar irradiation and ambient temperature, which are analytically solved from the integral calculus. For testing the proposed modeling algorithm, we utilize realistic measurement data sets obtained from the Seokwang Solar power plant in Youngcheon, Korea. We demonstrate reliability and superiority of the proposed photovoltaic system model by observing error signals between a practical system output and its estimation.