• Title/Summary/Keyword: Error Mode

Search Result 1,217, Processing Time 0.043 seconds

A study on an error recovery expert system as a part of man-robot system (Man-robot system의 일환으로서 에러회복 전문가시스템에 관한 연구)

  • 이순요;김창대
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.518-523
    • /
    • 1988
  • A Teaching and Operating Expert System (TOES) was designed in order to perform a task effectively which is inaccessible to man. Once an error occurs in the middle of the task operation, the automatic mode is converted into a manual mode. After recovering the error by the manual mode, the manual mode should be converted into the automatic mode. It was necessary to improve the manual mode in order to increase the availability of a man-robot system, a part of the human interface technique. Therefore, the Error Recovery Expert System must be constructed and developed.

  • PDF

Channel Adaptive RPSS(Reference Picture Segment Selection) Technique for Error-Resilient Video Communication over Wireless Channels (무선 채널에서의 오류에 강인한 비디오 통신을 위한 채널 환경에 적응적인 참조 영상 세그먼트 선택(RPSS)기법)

  • ;Soo-Yeal Park
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.3A
    • /
    • pp.325-333
    • /
    • 2000
  • The proposed RPSS(Reference Picture Segment Selection) mode is the RPS mode in picture segment of the ISD mode. The RPS mode has the weakness that it has to change the whole reference picture even if transmission error occurs only in the small part of picture. If the RPS mode is applied only to an error-occurred part and a conventional coding scheme is applied to an error-free part, the higher coding efficiency can be obtained. Simulation results show that there is the optimal number of segment which provides that best performance with given environment such as the BER(Bit Error Rate) of wireless channels, the characteristics of imput sequence, what kind of RPSS mode is used, etc. To apply the channel-adoptive RPSS mode later, the scheme which can change the number of segment without INTRA refresh and spatial error propagation is proposed in this paper.

  • PDF

A Study on a Geometrical Analysis for the Manual Mode of an Advanced Teleoperator System (지적 원격조작시스템의 수동모드 개선을 위한 기하학적 해석에 관한 연구)

  • Lee, Sun-Yo;Kim, Chang-Dae;Park, Se-Gwon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.31-44
    • /
    • 1988
  • If an error occurs in the automatic mode when the advanced teleoperator system performs a task in hostile environment then the automatic mode changes into the manual mode. The operation by the control program and the operation by a human recover the error in the manual mode. The system resumes the automatic mode and continues the given task. It is necessary to improve the manual mode in order to make the best use of a man-robot system, as a part of the human interface technique. Therefore, the error recovery task is performed by combining the operation by the control program representing autonomy of a robot and the operation by a human representing versatility of a human operator effectively in the view point of human factors engineering. The geometric inverse kinematics is used for the calculation of the robot joint values in the operation by the control program. The singularity operation error and the parameter operation error often occur in this procedure. These two operation errors increase the movement time of the robot and the coordinate reading time, during the error recovery task. A singularity algorithm, parameter algorithm and fuzzy control are studied so as to remove the disadvantages of geometric inverse kinematics. And the geometric straight line motion is studied so as to improve the disadvantages of the operation by a human.

  • PDF

A posteriori error estimation via mode-based finite element formulation using deep learning

  • Jung, Jaeho;Park, Seunghwan;Lee, Chaemin
    • Structural Engineering and Mechanics
    • /
    • v.83 no.2
    • /
    • pp.273-282
    • /
    • 2022
  • In this paper, we propose a new concept for error estimation in finite element solutions, which we call mode-based error estimation. The proposed error estimation predicts a posteriori error calculated by the difference between the direct finite element (FE) approximation and the recovered FE approximation. The mode-based FE formulation for the recently developed self-updated finite element is employed to calculate the recovered solution. The formulation is constructed by searching for optimal bending directions for each element, and deep learning is adopted to help find the optimal bending directions. Through various numerical examples using four-node quadrilateral finite elements, we demonstrate the improved predictive capability of the proposed error estimator compared with other competitive methods.

Design of MEMS Resonator Array for Minimization of Mode Localization Factor Subject to Random Fabrication Error (랜덤 제조 오차를 고려한 모드 편재계수를 최소화하는 반복 배열 마이크로 공진기의 최적설계)

  • Kim, Wook-Tae;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.840-845
    • /
    • 2005
  • This paper presents a robust optimal design method for a periodic structure type of MEMS resonator that is vulnerable to mode localization. The robust configuration of such a MEMS resonator to fabrication error is implemented by changing the regularity of periodic structure. For the mathematical convenience, the MEMS resonator is first modeled as a multi pendulum system. The index representing the measure of mode variation is then introduced using the perturbation method and the concept of modal assurance criterion. Finally, the optimal intentional mistuning, minimizing the expectation of the irregularity measure for each substructure, is determined for the normal distributed fabrication error and its robustness in the design of MEMS resonator to the fabrication error is demonstrated with numerical examples.

  • PDF

Design of MEMS Resonator Array for Minimization of Mode Localization Factor Subject to Random Fabrication Error (랜덤 제조 오차를 고려한 모드 편재계수를 최소화하는 반복 배열 마이크로 공진기의 최적설계)

  • Kim, Wook-Tae;Lee, Chong-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.8 s.101
    • /
    • pp.931-938
    • /
    • 2005
  • This paper presents a robust optimal design method for a periodic structure type of MEMS resonator that is vulnerable to mode localization. The robust configuration of such a MEMS resonator to fabrication error is implemented by changing the regularity of periodic structure For the mathematical convenience, the MEMS resonator is first modeled as a multi-pendulum system. The index representing the measure of mode variation is then introduced using the perturbation method and the concept of modal assurance criterion. Finally, the optimal intentional mistuning, minimizing the expectation of the irregularity measure for each substructure, is determined for the normal distributed fabrication error and its robustness in the design of MEMS resonator to the fabrication error is demonstrated with numerical examples.

The Common Mode Failures Analysis of The Redundant System with Dependent Human Error (의존적 인간 실수를 고려한 중복 시스템의 Common Mode Failures의 분석)

  • Myung Ki Kim;Soon Heung Chang
    • Nuclear Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.229-235
    • /
    • 1983
  • Common Mode Failures (CMFs) have been a serious concern in the nuclear power plant. There is a broad category of the failure mechanisms that can cause common mode failures. This paper is a theoretical investigation of the CMFs on the unavailability of the redundant system. It is assumed that the total CMFs consist of the potential CMFs and the dependent human error CMFs. As the human error dependence is higher, the total CMFs are more effected by the dependent human error. If the human error dependence is lower, the system unavailability strongly depends on the potential CMFs, rather than the mechanical failure or the dependent human error. And it is shown that the total CMFs are dominant factor to the unavailability of the redundant system.

  • PDF

Identification of suspension systems using error self recurrent neural network and development of sliding mode controller (오차 자기 순환 신경회로망을 이용한 현가시스템 인식과 슬라이딩 모드 제어기 개발)

  • 송광현;이창구;김성중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.625-628
    • /
    • 1997
  • In this paper the new neural network and sliding mode suspension controller is proposed. That neural network is error self-recurrent neural network. For fast on-line learning, this paper use recursive least squares method. A new neural networks converges considerably faster than the backpropagation algorithm and has advantages of being less affected by the poor initial weights and learning rate. The controller for suspension systems is designed according to sliding mode technique based on new proposed neural network.

  • PDF

A study on a design of developed-ERES/WCS using the ASR and fuzzy set theory as a part of human interface technique (Human interface 기술의 일환으로서 ASR과 fuzzy set theory를 이용한 developed-ERES/WCS 설계에 관한 연구)

  • 이순요;이창민;박세권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.76-81
    • /
    • 1988
  • As a means of human interface, this study designs Developed-ERES/WCS with voice recognition capability and fuzzy set theory. In the advanced teleoperator system, when an error occurs on the automatic mode, the error is recovered after the automatic mode is changed into the manual mode intervened by a human. The purpose of this study is to reduce human work load and to shorten error recovery time during error recovery.

  • PDF

Comparison on the Error Rates of Calibration Modes in Intervention (인터벤션에서 Calibration Mode에 대한 오차율 비교)

  • Kong, Chang gi;Ryu, Young hwan
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.619-626
    • /
    • 2020
  • This study aimed to identify the error rates in Catheter Calibration Mode, Auto Calibration Mode, and Segment Calibration Mode among many calibration modes as a quantitative evaluation tool used for predicting the diameter and length of balloon or stent in percutaneous intravascular balloon dilatation or stent insertion. Our experiment was conducted with Copper Wire of 2 mm × 80 mm (diameter × length) manufactured elaborately for quantitative evaluation in calibration and Metal Ball of 5, 10, 15, 30, and 40 mm and Acryl Phantom of 25 mm, 50 mm, 75mm, 100 mm, 125 mm, 150mm, 175 mm, and 200 mm. At each height, subtraction images were acquired with a cineangiograph and Stenosis Analysis Tool as a software provided by the equipment company was used for measurement. To evaluate the error rates in Catheter Calibration Mode, Copper Wire was put on each acryl phantom before shooting. Copper Wire of 2 mm in diameter was set as a diameter for catheter, and Copper Wire of 8 mm in length was measured with Multi-segments. As a result, the error rates appeared at 1.13 ~ 5.63%. To evaluate the error rates in Auto Calibration Mode, the height of acryl was entered at each height of acryl phantom and the length of 8 mm Copper Wire was measured with Multi-segments and as a result, the error rates appeared at 0 ~ 0.26%. To evaluate the error rates in Segment Calibration Mode, each metal ball on the floor of table was calibrated and the length of 8 mm Copper Wire on each acryl phantom was measured and the length of 8 mm Copper Wire depending on the changes of acryl phantom height was measured with Mutli-segments and as a result, the error rates appeared at 1.05 ~ 19.04%. And in the experiment on OID changes in Auto Calibration Mode, the height of acryl phantom was fixed at 100mm and OID only changed within the range of 450 mm ~ 600 mm and as a result, the error rates appeared at 0.13 ~ 0.38%. In conclusion, it was found that entering the height values in Auto Calibration Mode, among these Calibration Modes for evaluating quantitative vascular dimensions provided by the software was the calibration method with the least error rates and it is thus considered that for calibration using a metal ball or other objects, putting them in the same height as that of treatment sites before calibrating is the method that can reduce the error rates the most.