• Title/Summary/Keyword: Error Inspection

Search Result 475, Processing Time 0.024 seconds

Usability Evaluation of Foot Pedal Switch in X-ray Radiography System (진단용 엑스선 촬영장치에서 발판 스위치의 유용성 평가)

  • Kwon, Hyeokjin;Jung, Hongmoon;Jung, Jaeeun;Jung, Kyunghwan;Won, Doyeon
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.5
    • /
    • pp.651-658
    • /
    • 2018
  • A foot pedal switch in the diagnosis x-ray radiography system has been researched to improve radiologic technologist works and patient satisfaction. The switch has been installed in the diagnosis x-ray radiography system used in domestic clinics. Quantitative evaluation has been conducted by measuring the exposure dose reproducibility test, tube voltage, mAs, and percentage average error. Qualitative evaluation has been conducted by analysis of the radiologic technologists questionnaire. In the quantitative evaluation for the use of the foot pedal switch, the coefficient of variation was less than 0.05 in the exposure dose reproducibility test. In the mAs test, percentage average error of ${\pm}20%$ was measured. There was no problem raised since it meets the all inspection standards of the diagnosis x-ray generator. In the qualitative evaluation, most of the opinions are that it has a clinical value for the foot pedal switch in the diagnosis x-ray radiography system. Therefore, developing the foot pedal switch for the diagnosis x-ray radiography system can improve effectively the rapidity and accuracy of the radiologic technologist work. In addition, it is effective in decreasing the x-ray exposure of patients and increasing satisfaction for the medical service due to reduction of retaking x-ray.

Generation of the KOMPSAT-2 Ortho Mosaic Imagery on the Korean Peninsula (아리랑위성 2호 한반도 정사모자이크영상 제작)

  • Lee, Kwang-Jae;Yyn, Hee-Cheon;Kim, Youn-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.3
    • /
    • pp.103-114
    • /
    • 2013
  • In this study, we established the ortho mosaic imagery on the Korean Peninsula using KOMPSAT-2 images and conducted an accuracy assessment. Rational Polynomial Coefficient(RPC) modeling results were mostly less than 2 pixels except for mountainous regions which was difficult to select a Ground Control Point(GCP). Digital Elevation Model(DEM) which was made using the digital topographic map on the scale of 1:5,000 was used for generating an ortho image. In the case of inaccessible area, the Shuttle Radar Topography Mission(SRTM) DEM was used. Meanwhile, the ortho mosaic image of the Korean Peninsula was produced by each ortho image aggregation and color adjustment. An accuracy analysis for the mosaic image was conducted about a 1m color fusion image. In order to verify a geolocation accuracy, 813 check points which were acquired by field survey in South Korea were used. We found that the maximum error was not to exceed 5m(Root Mean Square Error : RMSE). On the other hand, in the case of inaccessible area, the extracted check points from a reference image were used for accuracy analysis. Approximately 69% of the image has a positional accuracy of less than 3m(RMSE). We found that the seam-line accuracy among neighboring image was very high through visual inspection. However, there were a discrepancy with 1 to 2 pixels at some mountainous regions.

A Study on the Compensation of Thermal Errors for Phase Measuring Profilometry (PMP 형상 측정법의 열 변위 보정에 관한 연구)

  • Kim, Gi-Seung;Park, Yoon-Chang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.598-603
    • /
    • 2019
  • Three-dimensional shape measurement technology is used in various industries. Among them, optical three-dimensional shape measurement techniques based on the optical trigonometry are mainly used in the field of semiconductor product inspection, where large quantities of three-dimensional shape measurements are made daily in factories and fine measurements are also required. The light source and the drive circuit, which are components of three-dimensional measurement equipment based on this optical trigonometry, produce heat generated by prolonged operation, and may be exposed to conditions where the ambient temperature is not constant, resulting in temperature-induced measurement errors. In this study, the compensation method of the Thermal Errors for Phase Measuring Profilometry is proposed. Three-Dimensional Shape Measurement Equipment based on Phase Measuring Profilometry is implemented to measure the height of an object and ambient temperature for 10 Hours, and a regression line was obtained line by making simple linear regression using measured temperature and height values. This regression line was used to correct the error of the height measurement according to the temperature, and thermal error was from 139.88 um(Micrometer) to 13.12 um.

PM10 β-ray attenuation samplers (β-ray absorption method) equivalence evaluation and comparatively observed study (PM10 연속자동측정기(β-ray) 등가성평가 및 비교관측 연구)

  • WonSeok Jung;Hee-Jung Ko;Wonick Seo;Jiyoung Jeong;Sang Min Oh;Kyung-On Boo
    • Particle and aerosol research
    • /
    • v.19 no.1
    • /
    • pp.13-20
    • /
    • 2023
  • The Asian dust observation network operates β-ray attenuation samplers to measure PM10 concentrations. In addition, equivalence evaluation and accuracy inspection(Precision Tests) are conducted every year for the reliability of data. β-ray attenuation samplers(16 units) were comparatively observed from May to June 2020 and from July to December 2021. During the observation period, the average daily temperature was the lowest at 6.4℃ in December and the highest at 27.3℃ in August. The average daily humidity ranged from 60% to 100%, but the average daily humidity was over 75% from July to September. The minimum value of the PM10 Gravimetric method was 5.0 ㎍/m3, the maximum value was 53.4 ㎍/m3, and the average value was 17.8 ㎍/m3. The equivalence evaluation results of the PM10 Gravimetric method and β-ray attenuation samplers satisfied the criteria (slope: 1±0.1, intercept: 0±0.5). A relative error analysis between the PM10 Gravimetric method and β-ray attenuation samplers equipment showed that the relative error increased when the concentration was low and the temperature and humidity were high. In addition, in the β-ray attenuation samplers 5-minute interval observation data in May 2020, a relatively large Standard devication was shown as an average maximum ±23.4 ㎍/m3 and a minimum ±15.2 ㎍/m3. At standard deviations of 10% and 90%, equipment with high variability (deviation) was measured at 6 ㎍/m3and 61 ㎍/m3, and equipment with low variability was measured at 12 ㎍/m3 and 47 ㎍/m3. It was confirmed that concentration differences occurred due to differences in variability for each equipment.

Nondestructive Examination of PHWR Pressure Tube Using Eddy Current Technique (와전류검사 기술을 적용한 가압중수로 원전 압력관 비파괴검사)

  • Lee, Hee-Jong;Choi, Sung-Nam;Cho, Chan-Hee;Yoo, Hyun-Joo;Moon, Gyoon-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.3
    • /
    • pp.254-259
    • /
    • 2014
  • A pressurized heavy water reactor (PHWR) core has 380 fuel channels contained and supported by a horizontal cylindrical vessel known as the calandria, whereas a pressurized water reactor (PWR) has only a single reactor vessel. The pressure tube, which is a pressure-retaining component, has a 103.4 mm inside diameter ${\times}$ 4.19 mm wall thickness, and is 6.36 m long, made of a zirconium alloy (Zr-2.5 wt% Nb). This provides support for the fuel while transporting the $D_2O$ heat-transfer fluid. The simple tubular geometry invites highly automated inspection, and good approach for all inspection. Similar to all nuclear heat-transfer pressure boundaries, the PHWR pressure tube requires a rigorous, periodic inspection to assess the reactor integrity in accordance with the Korea Nuclear Safety Committee law. Volumetric-based nondestructive evaluation (NDE) techniques utilizing ultrasonic and eddy current testing have been adopted for use in the periodic inspection of the fuel channel. The eddy current testing, as a supplemental NDE method to ultrasonic testing, is used to confirm the flaws primarily detected through ultrasonic testing, however, eddy current testing offers a significant advantage in that its ability to detect surface flaws is superior to that of ultrasonic testing. In this paper, effectiveness of flaw detection and the depth sizing capability by eddy current testing for the inside surface of a pressure tube, will be introduced. As a result of this examination, the ET technique is found to be useful only as a detection technique for defects because it can detect fine defects on the surface with high resolution. However, the ET technique is not recommended for use as a depth sizing method because it has a large degree of error for depth sizing.

A Study on the Automatic Inspection of Sewer Facility Map (하수도시설물도 자동 검수 방안 연구)

  • Kim, Chang-Hwan;Ohk, Won-Soo;Yoo, Jae-Yong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.2
    • /
    • pp.67-78
    • /
    • 2006
  • Local governments began to construct geographic information system to improve government productivity and performance. In support, central government organized a national commission for GIS. The master plan by NGIS has been the base for local government to participate in the construction of GIS at the local level in the under ground facilities management including water and sewers. The challenge faced by sewer facility managers includes controlling 'data accuracy'. The input for sewer data handling for efficient performance in local government requires accurate data. However data manipulation to get the 'good quality' data can be burdensome. Thus, the aim of this research is to provide the appropriate tool to guarantee the high quality of digital data in sewer facility management. It is helpful to pass the data examination by government as well as to insure confidence of decision and data analysis works in local government. In this research, error types of sewer data were classified and pointed the limitation of traditional examination methods. Thus this research suggested more improved method for finding and correcting errors in data input using sewer volume analysis and prediction model as immigrating sewer facility management work to Geographic Information System.

  • PDF

An Estimation of Mean Background Concentrations of Greenhouse Gases Observed on Ulleungdo (울릉도 온실기체 관측자료를 이용한 배경대기 평균농도 산정)

  • Lim, Yun-Kyu;Moon, Yun-Seob;Kim, Jin-Seog;Song, Sang-Keun;Hong, Ji-Hyung
    • Journal of the Korean earth science society
    • /
    • v.33 no.1
    • /
    • pp.32-38
    • /
    • 2012
  • Mean background concentrations of greenhouse gases such as $CO_2$ and $CH_4$ were estimated on Ulleungdo using PICARRO Cavity Ring-Down Spectroscopy (CRDS) analyzer. To improve the accuracy of $CO_2$ and $CH_4$ concentrations, a standardized QA${\cdot}$QC (Quality Assurance Quality Control) procedure was employed with three steps: 1) the inspection procedure of physical limitation (e.g. the exclusion of data corresponding to the number of data of ${\leq}$50%) for hourly mean values, 2) a stage inspection (e.g. the use of data corresponding to ${\geq}15$ observations per day) for daily mean values, and 3) a fast fourier transform (FFT) analysis using curve-fitting methods for the investigation of climatic characteristics. The monthly mean concentrations of $CO_2$ and $CH_4$ derived from three-step QA${\cdot}$QC procedure were then compared with those observed at Anmyundo (Korea) and Ryori (Japan). Overall, the error of mean $CO_2$ and $CH_4$ concentrations estimated in this study distinctly decreased. However, in comparison with their concentrations monitored at Ryori, the $CO_2$ concentration at estimated at Ulleungdo is soemwhat lower than that of Anmyundo due to the missing data, which is statistically significant. On the other hand, the former has a statistically significant higher value of $CH_4$ that of the latter.

Flexural Behavior of Fiber Reinforced Concrete Beams with Hybrid Double-layer Reinforcing Bars (이중 보강근을 가지는 FRC 보의 휨성능)

  • Kim, Seongeun;Kim, Seunghun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.199-207
    • /
    • 2018
  • Experimental programs were performed to evaluate the flexural performance of fiber reinforced concrete(FRC) beams using a hybrid double-layer arrangement of steel bars and fiber reinforced polymer(FRP) bars or using FRP bars only. A total of seven beam specimens were produced with type of tensile reinforcing bar(CFRP bar, GFRP bar, steel bar) and the poly vinyl alcohol(PVA) fiber mixing ratio(0.5%, 0%) as variable. An analysis method for predicting the flexural behaviors of FRC beams with hybrid arrangement of heterogeneous reinforcing bars through finite element analysis was proposed and verified. In case of the specimens with the double-layer reinforcing bars, the test results showed that the first cracking load of specimen with a double-layer arrangement of steel bars was greater by 26-34% than specimens with a hybrid double-layer arrangement of steel and FRP bars. In maximum flexural strengths, the specimen that used CFRP bars as bottom tensile reinforcing bar showed the greatest strength among the specimens with the double-layer reinforcing bars. When the maximum moment value obtained through experiments was compared with that obtained through analysis, the ratio was 1.2 on average, the standard deviation was 0.085, and the maximum error rate was 22% or less. Based on these results, the finite element analysis model proposed in this study can effectively simulate the actual behavior of the beams with hybrid double-layer reinforcing bars.

The Influence Factors on the Compensation of Column Shortening in Tall Buildings (초고층 건물의 Column Shortening보정에 미치는 영향요소)

  • Mun, Il-Won;Choi, Ki-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.208-215
    • /
    • 2018
  • The causes of column shrinkage and the codes that have been studied up to now are discussed. The documents mentioned in the code deal with the drying shrinkage, creep, compressive strength and elastic modulus of the specimen, and the elastic deformation calculated from the structural analysis. However, the deformation due to the temperature caused by the long term monitoring is less than that caused by the factors generated by the previous studies. In the previous studies, it was found that dehydration shrinkage, creep, and elastic deformation were not considered for temperature-induced deformation, while for the specimen experiments, the temperature-related items were replaced with the humidity-related terms The compensation value by the proposed equation showed error of 4.9 mm in the upper direction and 1.0mm in the lower direction when calculating column shortening, and it was found that its value by the proposed equation almost coincided with the measurement value in Site. Therefore, it is necessary to further study the temperature that can be omitted in calculating the existing column shortening, to consider the influence factors, and to supplement the criteria for the temperature measurement of the structure as well as the specimen tests.

Tension Estimation of External Tendons in PC Bridges Using Vibration Measurement Method (진동 측정법을 이용한 PC교량 외부텐던의 장력 추정)

  • Park, Sung Woo;Jung, Ha Tae;Jung, Soo Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.84-92
    • /
    • 2014
  • In this study, vibrational tendon tension measurement methods are applied to estimate tension of external tendons used in segmental post-tensioned bridges. The acceleration of various length type of tendons is measured and natural frequencies are obtained using FFT (Fast Fourier Transform). The obtained natural frequencies are within 1% error regardless of sensor direction and location. On the basis of natural frequency of tendon, estimation of the tendon tension is performed by using many types of solutions such as string theory equation, multi mode estimation, practical formula estimation and stiff string with clamped-clamped boundary conditions. The results are compared with each other and have shown that the flexural stiffness is not negligible in tendons of this type causing the vibration mode to be inharmonically related. The results have shown that the method using stiff string equation with clamped-clamped boundary conditions is more accurate than the other methods. Application example of in-service bridges has shown that force distribution effects from friction at deviation blocks can be effectively detected.