• Title/Summary/Keyword: Error Factors

Search Result 1,877, Processing Time 0.033 seconds

Thin Layer Drying and Quality Characteristics of Ainsliaea acerifolia Sch. Bip. Using Far Infrared Radiation (원적외선을 이용한 단풍취의 박층 건조 및 품질 특성)

  • Ning, Xiao Feng;Li, He;Kang, Tae Hwan;Lee, Jun Soo;Lee, Jeong Hyun;Ha, Chung Su
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.6
    • /
    • pp.884-892
    • /
    • 2014
  • The purpose of this study was to investigate the drying characteristics and drying models of Ainsliaea acerifolia Sch. Bip. using far-infrared thin layer drying. Far-infrared thin layer drying test on Ainsliaea acerifolia Sch. Bip. was conducted at two air velocities of 0.6 and 0.8 m/sec, as well as three drying temperatures of 40, 45, and $50^{\circ}C$ respectively. The drying models were estimated using coefficient of determination and root mean square error. Drying characteristics were analyzed based on factors such as drying rate, leaf color changes, antioxidant activity, and contents of polyphenolics and flavonoids. The results revealed that increases in drying temperature and air velocity caused a reduction in drying time. The Thompson model was considered suitable for thin layer drying using far-infrared radiation for Ainsliaea accerifolia Sch. Bip. Greenness and yellowness values decreased and lightness values increased after far-infrared thin layer drying, and the color difference (${\Delta}E$) values at $40^{\circ}C$ were higher than those at $45^{\circ}C$ and $50^{\circ}C$. The antioxidant properties of Ainsliaea acerifolia Sch. Bip. decreased under all far-infrared thin layer drying conditions, and the highest polyphenolic content (37.9 mg/g), flavonoid content (22.7 mg/g), DPPH radical scavenging activity (32.5), and ABTS radical scavenging activity (31.1) were observed at a drying temperature of $40^{\circ}C$ with an air velocity of 0.8 m/sec.

Far Infrared Drying Characteristics of Seasoned Red Pepper Sauce Dried by Heated Air (1차 열풍건조 한 고추 다진 양념의 원적외선 건조특성)

  • Cho, Byeong Hyo;Lee, Jung Hyun;Kang, Tae Hwan;Lee, Hee Sook;Han, Chung Su
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.9
    • /
    • pp.1358-1365
    • /
    • 2016
  • The purpose of this study was to verify the drying characteristics of seasoned red pepper sauce and establish optimal drying conditions for far infrared drying of seasoned red pepper sauce. Seasoned red pepper sauce, which was dried by heated air, was used. One kg of seasoned red pepper was spread at thicknesses of 10 and 20 mm and dried by a far infrared dryer until a final moisture content of $15{\pm}0.5%$. The far infrared dryer conditions were air velocity of 0.6, 0.8 m/s and drying temperatures of 60, 70, and $80^{\circ}C$. The drying models were estimated using a determination coefficient and root mean square error. Drying characteristics were analyzed based on factors such as drying rate, color changes, content of capsaicinoids, and energy consumption. The results can be summarized as follows. The drying rate (that is, drying time) tended to be reduced as temperature and air velocity for drying increased. The Page and Henderson models were suitable for drying of seasoned red pepper sauce by a far infrared dryer. Redness decreased after far infrared drying under all experimental conditions. The color difference was 18.18 under the following conditions: thickness 20 mm, temperature $70^{\circ}C$, and air velocity 0.8 m/s. This value was slightly higher than those under other far infrared drying conditions. The capsaicinoid properties of seasoned red pepper sauce decreased under all far infrared drying conditions. The highest capsaicin (19.91 mg/100 g) and dihydrocapsaicin (12.87 mg/100 g) contents were observed at a thickness of 10 mm, temperature of $80^{\circ}C$, and air velocity of 0.8 m/s. Energy consumption decreased with higher temperature, slower air velocity, and thinner seasoned red pepper sauce.

Beam Shaping by Independent Jaw Closure in Steveotactic Radiotherapy (정위방사선치료 시 독립턱 부분폐쇄를 이용하는 선량분포개선 방법)

  • Ahn Yong Chan;Cho Byung Chul;Choi Dong Rock;Kim Dae Yong;Huh Seung Jae;Oh Do Hoon;Bae Hoonsik;Yeo In Hwan;Ko Young Eun
    • Radiation Oncology Journal
    • /
    • v.18 no.2
    • /
    • pp.150-156
    • /
    • 2000
  • Purpose : Stereotactic radiation therapy (SRT) can deliver highly focused radiation to a small and spherical target lesion with very high degree of mechanical accuracy. For non-spherical and large lesions, however, inclusion of the neighboring normal structures within the high dose radiation volume is inevitable in SRT This is to report the beam shaping using the partial closure of the independent jaw in SRT and the verification of dose calculation and the dose display using a home-made soft ware. Materials and Methods : Authors adopted the idea to partially close one or more independent collimator jaw(5) in addition to the circular collimator cones to shield the neighboring normal structures while keeping the target lesion within the radiation beam field at all angles along the arc trajectory. The output factors (OF's) and the tissue-maximum ratios (TMR's) were measured using the micro ion chamber in the water phantom dosimetry system, and were compared with the theoretical calculations. A film dosimetry procedure was peformed to obtain the depth dose profiles at 5 cm, and they were also compared with the theoretical calculations, where the radiation dose would depend on the actual area of irradiation. Authors incorporated this algorithm into the home-made SRT software for the isodose calculation and display, and was tried on an example case with single brain metastasis. The dose-volume histograms (DVH's) of the planning target volume (PTV) and the normal brain derived by the control plan were reciprocally compared with those derived by the plan using the same arc arrangement plus the independent collimator jaw closure. Results : When using 5.0 cm diameter collimator, the measurements of the OF's and the TMR's with one independent jaw set at 30 mm (unblocked), 15.5 mm, 8.6 mm, and 0 mm from th central beam axis showed good correlation to the theoretical calculation within 0.5% and 0.3% error range. The dose profiles at 5 cm depth obtained by the film dosimetry also showed very good correlation to the theoretical calculations. The isodose profiles obtained on the home-made software demonstrated a slightly more conformal dose distribution around the target lesion by using the independent jaw closure, where the DVH's of the PTV were almost equivalent on the two plans, while the DVH's for the normal brain showed that less volume of the normal brain receiving high radiation dose by using this modification than the control plan employing the circular collimator cone only. Conclusions : With the beam shaping modification using the independent jaw closure, authors have realized wider clinical application of SRT with more conformal dose planning. Authors believe that SRT, with beam shaping ideas and efforts, should no longer be limited to the small spherical lesions, but be more widely applied to rather irregularly shaped tumors in the intracranial and the head and neck regions.

  • PDF

Technical Efficiency of Medical Resource Supply and Demand (의료자원 공급, 수요의 성과 효율성에 대한 실증분석)

  • Chang, Insu;Ahn, Hyeong Seok;Kim, Brian H.S.
    • Journal of the Korean Regional Science Association
    • /
    • v.34 no.2
    • /
    • pp.3-19
    • /
    • 2018
  • The objective of this study is to observe the efficiency of clinical performance on the supply and demand of medical resources in Korea. For the empirical analysis, we constructed the dataset on age standardized mortality rate, the number of physician, specialist, surgery, medical institution, ratio of general hospitals of 16 provinces in Korea from 2006 to 2013. The panel probability frontier model is employed as an analysis method and considered heteroscedasticity and autocorrelation of the error in panel data. In addition, the demographic and socioeconomic characteristics of the 16 provinces, unemployment rate, elderly population ratio, GRDP per capita, and ratio of hospitals in comparison to the general hospitals are used to find the effect on the technical efficiency of clinical performance on supply and demand of medical resources. The results are as follows. First, for the clinical performance, the supply side of human resources such as doctors and specialists and the demand side factors such as chronic illness clinic per unit population have a significant influence, respectively. Second, the technical efficiency of clinical performance on the supply and demand of medical resources of each input component was 59-70% in terms of clinical efficiency in each region. Third. estimates of technical efficiency of inputs that affect clinical performance showed a slight increase in all regions during the analysis period, but the increase trend decreased slightly. Fourth, the ratio of the elderly population and GRDP per capita have a positive influence on the technical efficiency of clinical performance on the supply and demand of medical resources. The difference of each efficiency by region is due to the regional differences of the input medical resources and the combination of them and the demographic and socioeconomic characteristics of the region. It is understood that the differences in technological efficiency due to the complexity of supply and demand of medical resources, demographic structure and economic difference affecting clinical performance by region are different.

The PRISM-based Rainfall Mapping at an Enhanced Grid Cell Resolution in Complex Terrain (복잡지형 고해상도 격자망에서의 PRISM 기반 강수추정법)

  • Chung, U-Ran;Yun, Kyung-Dahm;Cho, Kyung-Sook;Yi, Jae-Hyun;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.2
    • /
    • pp.72-78
    • /
    • 2009
  • The demand for rainfall data in gridded digital formats has increased in recent years due to the close linkage between hydrological models and decision support systems using the geographic information system. One of the most widely used tools for digital rainfall mapping is the PRISM (parameter-elevation regressions on independent slopes model) which uses point data (rain gauge stations), a digital elevation model (DEM), and other spatial datasets to generate repeatable estimates of monthly and annual precipitation. In the PRISM, rain gauge stations are assigned with weights that account for other climatically important factors besides elevation, and aspects and the topographic exposure are simulated by dividing the terrain into topographic facets. The size of facet or grid cell resolution is determined by the density of rain gauge stations and a $5{\times}5km$ grid cell is considered as the lowest limit under the situation in Korea. The PRISM algorithms using a 270m DEM for South Korea were implemented in a script language environment (Python) and relevant weights for each 270m grid cell were derived from the monthly data from 432 official rain gauge stations. Weighted monthly precipitation data from at least 5 nearby stations for each grid cell were regressed to the elevation and the selected linear regression equations with the 270m DEM were used to generate a digital precipitation map of South Korea at 270m resolution. Among 1.25 million grid cells, precipitation estimates at 166 cells, where the measurements were made by the Korea Water Corporation rain gauge network, were extracted and the monthly estimation errors were evaluated. An average of 10% reduction in the root mean square error (RMSE) was found for any months with more than 100mm monthly precipitation compared to the RMSE associated with the original 5km PRISM estimates. This modified PRISM may be used for rainfall mapping in rainy season (May to September) at much higher spatial resolution than the original PRISM without losing the data accuracy.

The Economic Growth of Korea Since 1990 : Contributing Factors from Demand and Supply Sides (1990년대 이후 한국경제의 성장: 수요 및 공급 측 요인의 문제)

  • Hur, Seok-Kyun
    • KDI Journal of Economic Policy
    • /
    • v.31 no.1
    • /
    • pp.169-206
    • /
    • 2009
  • This study stems from a question, "How should we understand the pattern of the Korean economy after the 1990s?" Among various analytic methods applicable, this study chooses a Structural Vector Autoregression (SVAR) with long-run restrictions, identifies diverse impacts that gave rise to the current status of the Korean economy, and differentiates relative contributions of those impacts. To that end, SVAR is applied to four economic models; Blanchard and Quah (1989)'s 2-variable model, its 3-variable extensions, and the two other New Keynesian type linear models modified from Stock and Watson (2002). Especially, the latter two models are devised to reflect the recent transitions in the determination of foreign exchange rate (from a fixed rate regime to a flexible rate one) as well as the monetary policy rule (from aggregate targeting to inflation targeting). When organizing the assumed results in the form of impulse response and forecasting error variance decomposition, two common denominators are found as follows. First, changes in the rate of economic growth are mainly attributable to the impact on productivity, and such trend has grown strong since the 2000s, which indicates that Korea's economic growth since the 2000s has been closely associated with its potential growth rate. Second, the magnitude or consistency of impact responses tends to have subsided since the 2000s. Given Korea's high dependence on trade, it is possible that low interest rates, low inflation, steady growth, and the economic emergence of China as a world player have helped secure capital and demand for export and import, which therefore might reduced the impact of each sector on overall economic status. Despite the fact that a diverse mixture of models and impacts has been used for analysis, always two common findings are observed in the result. Therefore, it can be concluded that the decreased rate of economic growth of Korea since 2000 appears to be on the same track as the decrease in Korea's potential growth rate. The contents of this paper are constructed as follows: The second section observes the recent trend of the economic development of Korea and related Korean articles, which might help in clearly defining the scope and analytic methodology of this study. The third section provides an analysis model to be used in this study, which is Structural VAR as mentioned above. Variables used, estimation equations, and identification conditions of impacts are explained. The fourth section reports estimation results derived by the previously introduced model, and the fifth section concludes.

  • PDF

Rediscovering the Interest of Science Education: Focus on the Meaning and Value of Interest (과학교육의 재미에 대한 재발견 -재미의 의미와 가치를 중심으로-)

  • Shin, Sein;Ha, Minsu;Lee, Jun-Ki
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.5
    • /
    • pp.705-720
    • /
    • 2018
  • The purpose of this study is to shed light on the meaning and value of interest (in Korean 'Jae-mi') in science education through literature analysis. Literature analyses were conducted on literature related to interest in various fields such as Korean language, psychology, philosophy, and education. Specifically, this study discussed the meaning of interest, the characteristics of the context of experiencing interest, the educational value of interest in science education, and the direction of science education to realize the value of interest. First, it was found that interest is an experience of emotional activation that can be felt through interaction with a specific object, and it is an emotional experience caused by the complex combination of various psychological factors, which is oriented sense, relationship, self, and object. Second, to understand the context of experience of interest, we conducted a topic modeling analysis with 1173 research articles related to interest. As a result of the analysis, it was confirmed that the context of interest is closely related with playfulness. And we addressed that this kind of playfulness is also found in science. Third, the educational values of interest in science education were discussed. In science education, fun is not only an instrumental value to induce science learning behavior, it is also one of the universal experiences that learners feel lively in science teaching-learning, and driving force of individual students' emotional development related to science. The students' active attitude to feel interest lead to creative thinking and action. Finally, we argued that the interest that should be aimed in science education should be active interest and experienced at trial and error, not passive interest induced by external stimuli. And science education culture should be encouraged to respect those who enjoy science. In particular, this study discussed the importance of each student's unique interest experience based on the philosophy of philosopher Deleuze (1976).

Analysis and Prediction of Sewage Components of Urban Wastewater Treatment Plant Using Neural Network (대도시 하수종말처리장 유입 하수의 성상 평가와 인공신경망을 이용한 구성성분 농도 예측)

  • Jeong, Hyeong-Seok;Lee, Sang-Hyung;Shin, Hang-Sik;Song, Eui-Yeol
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.308-315
    • /
    • 2006
  • Since sewage characteristics are the most important factors that can affect the biological reactions in wastewater treatment plants, a detailed understanding on the characteristics and on-line measurement techniques of the influent sewage would play an important role in determining the appropriate control strategies. In this study, samples were taken at two hour intervals during 51 days from $1^{st}$ October to $21^{st}$ November 2005 from the influent gate of sewage treatment plant. Then the characteristics of sewage were investigated. It was found that the daily values of flow rate and concentrations of sewage components showed a defined profile. The highest and lowest peak values were observed during $11:00{\sim}13:00$ hours and $05:00{\sim}07:00$ hours, respectively. Also, it was shown that the concentrations of sewage components were strongly correlated with the absorbance measured at 300 nm of UV. Therefore, the objective of the paper is to develop on-line estimation technique of the concentration of each component in the sewage using accumulated profiles of sewage, absorbance, and flow rate which can be measured in real time. As a first step, regression analysis was performed using the absorbance and component concentration data. Then a neural network trained with the input of influent flow rate, absorbance, and inflow duration was used. Both methods showed remarkable accuracy in predicting the resulting concentrations of the individual components of the sewage. In case of using the neural network, the predicted value md of the measurement were 19.3 and 14.4 for TSS, 26.7 and 25.1 for TCOD, 5.4 and 4.1 for TN, and for TP, 0.45 to 0.39, respectively.

Predictive Modeling of Bacillus cereus on Carrot Treated with Slightly Acidic Electrolyzed Water and Ultrasonication at Various Storage Temperatures (미산성 차아염소산수와 초음파를 처리한 당근에서 저장 중 Bacillus cereus 균의 생육 예측모델)

  • Kim, Seon-Young;Oh, Deog-Hwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.8
    • /
    • pp.1296-1303
    • /
    • 2014
  • This study was conducted to develop predictive models for the growth of Bacillus cereus on carrot treated with slightly acidic electrolyzed water (SAcEW) and ultrasonication (US) at different storage temperatures. In addition, the inactivation of B. cereus by US with SAcEW was investigated. US treatment with a frequency of 40 kHz and an acoustic energy density of 400 W/L at $40^{\circ}C$ for 3 min showed the maximum reduction of 2.87 log CFU/g B. cereus on carrot, while combined treatment of US (400 W/L, $40^{\circ}C$, 3 min) with SAcEW reached to 3.1 log CFU/g reduction. Growth data of B. cereus on carrot treated with SAcEW and US at different temperatures (4, 10, 15, 20, 25, 30, and $35^{\circ}C$) were collected and used to develop predictive models. The modified Gompertz model was found to be more suitable to describe the growth data. The specific growth rate (SGR) and lag time (LT) obtained from the modified Gompertz model were employed to establish the secondary models. The newly developed secondary models were validated using the root mean square error, bias factor, and accuracy factor. All results of these factors were in the acceptable range of values. After compared SGR and LT of B. cereus on carrot, the results showed that the growth of B. cereus on carrot treated with SAcEW and US was slower than that of single treatment. This result indicates that shelf life of carrot treated with SAcEW and US could be extended. The developed predictive models might also be used to assess the microbiological risk of B. cereus infection in carrot treated with SAcEW and US.

Strategies about Optimal Measurement Matrix of Environment Factors Inside Plastic Greenhouse (플라스틱온실 내부 환경 인자 다중센서 설치 위치 최적화 전략)

  • Lee, JungKyu;Kang, DongHyun;Oh, SangHoon;Lee, DongHoon
    • Journal of Bio-Environment Control
    • /
    • v.29 no.2
    • /
    • pp.161-170
    • /
    • 2020
  • There is systematic spatial variations in environmental properties due to sensitive reaction to external conditions at plastic greenhouse occupied 99.2% of domestic agricultural facilities. In order to construct 3 dimensional distribution of temperature, relative humidity, CO2 and illuminance, measurement matrix as 3 by 3 by 5 in direction of width, height and length, respectively, dividing indoor space of greenhouse was designed and tested at experimental site. Linear regression analysis was conducted to evaluate optimal estimation method in terms with horizontal and vertical variations. Even though sole measurement point for temperature and relative humidity could be feasible to assess indoor condition, multiple measurement matrix is inevitably required to improve spatial precision at certain time domain such as period of sunrise and sunset. In case with CO2, multiple measurement matrix could not successfully improve the spatial predictability during a whole experimental period. In case with illuminance, prediction performance was getting smaller after a time period of sunrise due to systematic interference such as indoor structure. Thus, multiple sensing methodology was proposed in direction of length at higher height than growing bed, which could compensate estimation error in spatial domain. Appropriate measurement matrix could be constructed considering the transition of stability in indoor environmental properties due to external variations. As a result, optimal measurement matrix should be carefully designed considering flexibility of construction relevant with the type of property, indoor structure, the purpose of crop and the period of growth. For an instance, partial cooling and heating system to save a consumption of energy supplement could be successfully accomplished by the deployment of multiple measurement matrix.