• Title/Summary/Keyword: Error Check Algorithm

Search Result 153, Processing Time 0.035 seconds

LDPC Code Design and Performance Analysis for Distributed Video Coding System (분산 동영상 부호화 시스템을 위한 LDPC 부호 설계 및 성능 평가)

  • Noh, Hyeun-Woo;Lee, Chang-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.1A
    • /
    • pp.34-42
    • /
    • 2012
  • Low density parity check (LDPC) code is widely used, since it shows superior performance close to Shannon limit and its decoding complexity is lower than turbo code. Recently, it is used as a channel code to decode Wyner-Ziv frames in distributed video coding (DVC) system. In this paper, we propose an efficient method to design the parity check matrix H of LDPC codes. In order to apply LDPC code to DVC system, the LDPC code should have rate compatibility. Thus, we also propose a method to merge check nodes of LDPC code to attain the rate compatibility. LDPC code is designed using ACE algorithm and check nodes are merged for a given code rate to maximize the error correction capability. The performance of the designed LDPC code is analyzed extensively by computer simulations.

High-Performance and Low-Complexity Decoding of High-Weight LDPC Codes (높은 무게 LDPC 부호의 저복잡도 고성능 복호 알고리즘)

  • Cho, Jun-Ho;Sung, Won-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5C
    • /
    • pp.498-504
    • /
    • 2009
  • A high-performance low-complexity decoding algorithm for LDPC codes is proposed in this paper, which has the advantages of both bit-flipping (BF) algorithm and sum-product algorithm (SPA). The proposed soft bit-flipping algorithm requires only simple comparison and addition operations for computing the messages between bit and check nodes, and the amount of those operations is also small. By increasing the utilization ratio of the computed messages and by adopting nonuniform quantization, the signal-to-noise ratio (SNR) gap to the SPA is reduced to 0.4dB at the frame error rate of 10-4 with only 5-bit assignment for quantization. LDPC codes with high column or row weights, which are not suitable for the SPA decoding due to the complexity, can be practically implemented without much worsening the error performance.

Reduced Complexity-and-Latency Variable-to-Check Residual Belief Propagation for LDPC Codes (LDPC 부호를 위한 복잡도와 대기시간을 낮춘 VCRBP 알고리즘)

  • Kim, Jung-Hyun;Song, Hong-Yeop
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6C
    • /
    • pp.571-577
    • /
    • 2009
  • This paper proposes some new improved versions of node-wise VCRBP algorithm for low-density parity-check (LDPC) codes, called forced-convergence node-wise VCRBP algorithm and sign based node-wise VCRBP, both of which significantly reduce the decoding complexity and latency, with only negligible deterioration in error correcting performance.

Novel Class of Entanglement-Assisted Quantum Codes with Minimal Ebits

  • Dong, Cao;Yaoliang, Song
    • Journal of Communications and Networks
    • /
    • v.15 no.2
    • /
    • pp.217-221
    • /
    • 2013
  • Quantum low-density parity-check (LDPC) codes based on the Calderbank-Shor-Steane construction have low encoding and decoding complexity. The sum-product algorithm(SPA) can be used to decode quantum LDPC codes; however, the decoding performance may be significantly decreased by the many four-cycles required by this type of quantum codes. All four-cycles can be eliminated using the entanglement-assisted formalism with maximally entangled states (ebits). The proposed entanglement-assisted quantum error-correcting code based on Euclidean geometry outperform differently structured quantum codes. However, the large number of ebits required to construct the entanglement-assisted formalism is a substantial obstacle to practical application. In this paper, we propose a novel class of entanglement-assisted quantum LDPC codes constructed using classical Euclidean geometry LDPC codes. Notably, the new codes require one copy of the ebit. Furthermore, we propose a construction scheme for a corresponding zigzag matrix and show that the algebraic structure of the codes could easily be expanded. A large class of quantum codes with various code lengths and code rates can be constructed. Our methods significantly improve the possibility of practical implementation of quantum error-correcting codes. Simulation results show that the entanglement-assisted quantum LDPC codes described in this study perform very well over a depolarizing channel with iterative decoding based on the SPA and that these codes outperform other quantum codes based on Euclidean geometries.

Effective identification of dominant fully absorbing sets for Raptor-like LDPC codes

  • Woncheol Cho;Chanho Yoon;Kapseok Chang;Young-Jo Ko
    • ETRI Journal
    • /
    • v.45 no.1
    • /
    • pp.7-17
    • /
    • 2023
  • The error-rate floor of low-density parity-check (LDPC) codes is attributed to the trapping sets of their Tanner graphs. Among them, fully absorbing sets dominantly affect the error-rate performance, especially for short blocklengths. Efficient methods to identify the dominant trapping sets of LDPC codes were thoroughly researched as exhaustively searching them is NP-hard. However, the existing methods are ineffective for Raptor-like LDPC codes, which have many types of trapping sets. An effective method to identify dominant fully absorbing sets of Raptor-like LDPC codes is proposed. The search space of the proposed algorithm is optimized into the Tanner subgraphs of the codes to afford time-efficiency and search-effectiveness. For 5G New Radio (NR) base graph (BG) 2 LDPC codes for short blocklengths, the proposed algorithm finds more dominant fully absorbing sets within one seventh of the computation time of the existing search algorithm, and its search-effectiveness is verified using importance sampling. The proposed method is also applied to 5G NR BG1 LDPC code and Advanced Television Systems Committee 3.0 type A LDPC code for large blocklengths.

Development of a New 2-Frame Particle Tracking Algorithm Using Match Probability (일치확률방식의 2-프레임 PTV 알고리듬 개발)

  • 백승조;이상준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1741-1748
    • /
    • 1995
  • A new particle tracking algorithm using the concept of match probability between two consequent image frames has been developed to obtain an instantaneous 2-dimensional velocity field. A computer simulation has been carried out to check the performance and usefulness of the developed algorithm by comparing with the conventional 4-frame Particle Tracking Velocimetry(PTV) method. As a result the newly developed algorithm shows very good performance. Although the major part of the developed algorithm is time-consuming iterative updating routine of match probability, computational elapse time to get the resonable results is a very short compared with the 4-frame PTv.Additionally, the present 2-frame PTV algorithm recovers more velocity vectors and has higher dynamic range and lower error ratio compared with the conventional 4-frame PTV.

Design and Performance Evaluation of Improved Turbo Equalizer (개선된 터보 등화기의 설계와 성능 평가)

  • An, Changyoung;Ryu, Heung-Gyoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.28-38
    • /
    • 2013
  • In this paper, we propose a improved turbo equalizer which generates a feedback signal through a simple calculation to improve performance in single carrier system with the LMS(least mean square) algorithm based equalizer and LDPC(low density parity check) codes. LDPC codes can approach the Shannon limit performance closely. However, computational complexity of LDPC codes is greatly increased by increasing the repetition of the LDPC codes and using a long parity check matrix in harsh environments. Turbo equalization based on LDPC code is used for improvement of system performance. In this system, there is a disadvantage of very large amount of computation due to the increase of the repetition number. To less down the amount of this complicated calculation, The proposed improved turbo equalizer adjusts the adoptive equalizer after the soft decision and the LDPC code. Through the simulation results, it's confirmed that performance of improved turbo equalizer is close to the SISO-MMSE(soft input soft output minimum mean square error) turbo equalizer based on LDPC code with the smaller amount of calculation.

Code Rate 1/2, 2304-b LDPC Decoder for IEEE 802.16e WiMAX (IEEE 802.16e WiMAX용 부호율 1/2, 2304-비트 LDPC 복호기)

  • Kim, Hae-Ju;Shin, Kyung-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4A
    • /
    • pp.414-422
    • /
    • 2011
  • This paper describes a design of low-density parity-check(LDPC) decoder supporting block length 2,304-bit and code rate 1/2 of IEEE 802.16e mobile WiMAX standard. The designed LDPC decoder employs the min-sum algorithm and partially parallel layered-decoding architecture which processes a sub-matrix of $96{\times}96$ in parallel. By exploiting the properties of the min-sum algorithm, a new memory reduction technique is proposed, which reduces check node memory by 46% compared to conventional method. Functional verification results show that it has average bit-error-rate(BER) of $4.34{\times}10^{-5}$ for AWGN channel with Fb/No=2.1dB. Our LDPC decoder synthesized with a $0.18{\mu}m$ CMOS cell library has 174,181 gates and 52,992 bits memory, and the estimated throughput is about 417 Mbps at 100-MHz@l.8-V.

Burst Error Performance of LDPC codes on Perpendicular Magnetic Recording Channel (수직 자기기록 채널에서 연집에러에 따른 LDPC 부호의 성능)

  • Kim, Sang-In;Lee, Jae-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11C
    • /
    • pp.868-873
    • /
    • 2008
  • In this paper, we analyze the burst error performance of LDPC codes on perpendicular magnetic recording(PMR) channel. When burst error is generated on PMR channel, we use channel state information(CSI) to set the LLR information of channel detector zero. We consider the rate 0.94 LDPC codes and use SOVA as channel detector with low complexity.

Estimation-based Watermarking Algorithm with Low Density Parity Check (LDPC) Codes (LDPC를 이용한 예측 기반 워터마킹 알고리듬)

  • Lim, Jae-Hyuck;Won, Chee-Sun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.1
    • /
    • pp.76-84
    • /
    • 2007
  • The goal of this paper is to improve the watermarking performance using the following two methods; watermark estimation and low density parity check (LDPC) codes. For a blind watermark decoding, the power of a host image, which is hundreds times greater than the watermark power, is the main noise source. Therefore, a technique that can reduce the effect of the power of the host image to the detector is required. To this end, we need to estimate watermark from the watermarked image. In this paper, the watermark estimation is done by an adaptive estimation method with the generalized Gaussian distribution modeling of sub-band coefficients in the wavelet domain. Since the watermark capacity as well as the error rate can be improved by adopting optimum decoding principles and error correcting codes (ECC), we employ the LDPC codes for the decoding of the estimated watermark. Also, in LDPC codes, the knowledge about the noise power can improve the error correction capability. Simulation results demonstrate the superior performance of the proposed algorithm comparing to LDPC decoding with other estimation-based watermarking algorithms.