• 제목/요약/키워드: Error Backpropagation Algorithm

검색결과 88건 처리시간 0.031초

수정된 Activation Function Derivative를 이용한 오류 역전파 알고리즘의 개선 (Improved Error Backpropagation Algorithm using Modified Activation Function Derivative)

  • 권희용;황희영
    • 대한전기학회논문지
    • /
    • 제41권3호
    • /
    • pp.274-280
    • /
    • 1992
  • In this paper, an Improved Error Back Propagation Algorithm is introduced, which avoids Network Paralysis, one of the problems of the Error Backpropagation learning rule. For this purpose, we analyzed the reason for Network Paralysis and modified the Activation Function Derivative of the standard Error Backpropagation Algorithm which is regarded as the cause of the phenomenon. The characteristics of the modified Activation Function Derivative is analyzed. The performance of the modified Error Backpropagation Algorithm is shown to be better than that of the standard Error Back Propagation algorithm by various experiments.

  • PDF

새로운 다층 신경망 학습 알고리즘 (A new learning algorithm for multilayer neural networks)

  • 고진욱;이철희
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.1285-1288
    • /
    • 1998
  • In this paper, we propose a new learning algorithm for multilayer neural networks. In the error backpropagation that is widely used for training multilayer neural networks, weights are adjusted to reduce the error function that is sum of squared error for all the neurons in the output layer of the network. In the proposed learning algorithm, we consider each output of the output layer as a function of weights and adjust the weights directly so that the output neurons produce the desired outputs. Experiments show that the proposed algorithm outperforms the backpropagation learning algorithm.

  • PDF

적응 오류 제약 Backpropagation 알고리즘 (Adaptive Error Constrained Backpropagation Algorithm)

  • 최수용;고균병;홍대식
    • 한국통신학회논문지
    • /
    • 제28권10C호
    • /
    • pp.1007-1012
    • /
    • 2003
  • Multilayer perceptrons (MLPs)를 위한 일반적인 BP 알고리즘의 학습 속도를 개선하기 위하여 제약을 갖는 최적화 기술을 제안하고 이를 backpropagation (BP) 알고리즘에 적용한다. 먼저 잡음 제약을 갖는 LMS (noise constrained least mean square : NCLMS) 알고리즘과 영잡음 제약 LMS (ZNCLMS) 알고리즘을 BP 알고리즘에 적용한다. 이러한 알고리즘들은 다음과 같은 가정을 반드시 필요로 하여 알고리즘의 이용에 많은 제약을 갖는다. NCLMS 알고리즘을 이용한 NCBP 알고리즘은 정확한 잡음 전력을 알고 있다고 가정한다. 또한 ZNCLMS 알고리즘을 이용한 ZNCBP 알고리즘은 잡음의 전력을 0으로 가정, 즉 잡음을 무시하고 학습을 진행한다. 본 논문에서는 확장된(augmented) Lagrangian multiplier를 이용하여, 비용함수(cost function)를 변형한다. 이를 통하여 잡음에 대한 가정을 제거하고 ZNCBP와 NCBP 알고리즘을 확장, 일반화하여 적응 오류 제약 BP(adaptive error constrained BP : AECBP) 알고리즘을 유도, 제안한다. 제안한 알고리즘들의 수렴 속도는 일반적인 BP 알고리즘보다 약 30배정도 빠른 학습 속도를 나타내었으며, 일반적인 선형 필터와 거의 같은 수렴속도를 나타내었다.

개선된 유전자 역전파 신경망에 기반한 예측 알고리즘 (Forecasting algorithm using an improved genetic algorithm based on backpropagation neural network model)

  • 윤여창;조나래;이성덕
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권6호
    • /
    • pp.1327-1336
    • /
    • 2017
  • 본 연구에서는 단기 예측을 위한 자기회귀누적이동평균모형, 역전파 신경망 및 유전자 알고리즘의 결합 적용에 대하여 논의하고 이를 통한 유전자-신경망 알고리즘의 효용성을 살펴본다. 일반적으로 역전파 알고리즘은 지역 최소값에 수렴될 수 있는 단점이 있기 때문에, 여기서는 예측 정확도를 높이기 위해 역전파 신경망 구조를 최적화하고 유전자 알고리즘을 결합한 유전자-신경망 알고리즘 기반 예측모형을 구축한다. 실험을 통한 오차 비교는 KOSPI 지수를 이용한다. 결과는 이 연구에서 제안된 유전자-신경망 모형이 역전파 신경망 모형과 비교할 때 예측 정확도에서 어느 정도 유의한 효율성을 보여주고자 한다.

다중 경로 채널 시스템에서 신경회로망을 이용한 간섭 신호 제거 (Rejection of Interference Signal Using Neural Network in Multi-path Channel Systems)

  • 석경휴
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 학술발표대회 논문집 제17권 1호
    • /
    • pp.357-360
    • /
    • 1998
  • DS/CDMA system rejected narrow-band interference and additional White Gaussian noise which are occured at multipath, intentional jammer and multiuser to share same bandwidth in mobile communication systems. Because of having not sufficiently obtained processing gain which is related to system performance, they were not effectively suppressed. In this paper, an matched filter channel model using backpropagation neural network based on complex multilayer perceptron is presented for suppressing interference of narrow-band of direct sequence spread spectrum receiver in DS/CDMA mobile communication systems. Recursive least square backpropagation algorithm with backpropagation error is used for fast convergence and better performance in matched filter receiver scheme. According to signal noise ratio and transmission power ratio, computer simulation results show that bit error ratio of matched filter using backpropagation neural network improved than that of RAKE receiver of direct sequence spread spectrum considering of con-channel and narrow-band interference.

  • PDF

오류 역전파 신경망 기반의 센서융합을 이용한 이동로봇의 효율적인 지도 작성 (An Effective Mapping for a Mobile Robot using Error Backpropagation based Sensor Fusion)

  • 김경동;곡효천;최경식;이석규
    • 한국정밀공학회지
    • /
    • 제28권9호
    • /
    • pp.1040-1047
    • /
    • 2011
  • This paper proposes a novel method based on error back propagation neural networks to fuse laser sensor data and ultrasonic sensor data for enhancing the accuracy of mapping. For navigation of single robot, the robot has to know its initial position and accurate environment information around it. However, due to the inherent properties of sensors, each sensor has its own advantages and drawbacks. In our system, the robot equipped with seven ultrasonic sensors and a laser sensor navigates to map two different corridor environments. The experimental results show the effectiveness of the heterogeneous sensor fusion using an error backpropagation algorithm for mapping.

오류 역전파 학습 알고리듬을 이용한 블록경계 영역에서의 적응적 블록화 현상 제거 알고리듬 (Adaptive Blocking Artifacts Reduction Algorithm in Block Boundary Area Using Error Backpropagation Learning Algorithm)

  • 권기구;이종원;권성근;반성원;박경남;이건일
    • 한국통신학회논문지
    • /
    • 제26권9B호
    • /
    • pp.1292-1298
    • /
    • 2001
  • 본 논문에서는 공간 영역에서의 블록 분류 (block classification)와 순방향 신경망 필터(feedforward neural network filter)를 이용한 블록 기반 부호화에서의 적응적 블록화 현상 제거 알고리듬을 제안하였다. 제안한 방법에서는 각 블록 경계를 인접 블록간의 통계적 특성을 이용하여 평탄 영역과 에지 영역으로 분류한 후, 각 영역에 대하여 블록화 현상이 발생하였다고 분류된 클래스에 대하여 적응적인 블록간 필터링을 수행한다. 즉, 평탄 영역으로 분류된 영역 중 블록화 현상이 발생한 영역은 오류 역전파 학습 알고리듬 (error backpropagation learning algorithm)에 의하여 학습된 2계층 (2-layer) 신경망 필터를 이용하여 블록화 현상을 제거하고, 복잡한 영역으로 분류된 영역 중 블록화 현상이 발생한 영역은 에지 성분을 보존하기 위하여 선형 내삽을 이용하여 블록간 인접 화소의 밝기 값만을 조정함으로써 블록화 현상을 제거한다. 모의 실험 결과를 통하여 제안한 방법이 객관적 화질 및 주관적 화질 측면에서 기존의 방법보다 그 성능이 우수함을 확인하였다.

  • PDF

신경망 학습 변수의 시변 제어에 관한 연구 (A study on time-varying control of learning parameters in neural networks)

  • 박종철;원상철;최한고
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2000년도 추계종합학술대회논문집
    • /
    • pp.201-204
    • /
    • 2000
  • This paper describes a study on the time-varying control of parameters in learning of the neural network. Elman recurrent neural network (RNN) is used to implement the control of parameters. The parameters of learning and momentum rates In the error backpropagation algorithm ate updated at every iteration using fuzzy rules based on performance index. In addition, the gain and slope of the neuron's activation function are also considered time-varying parameters. These function parameters are updated using the gradient descent algorithm. Simulation results show that the auto-tuned learning algorithm results in faster convergence and lower system error than regular backpropagation in the system identification.

  • PDF

가변학습율과 온라인모드를 이용한 개선된 EBP 알고리즘 (Improved Error Backpropagation by Elastic Learning Rate and Online Update)

  • Lee, Tae-Seung;Park, Ho-Jin
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.568-570
    • /
    • 2004
  • The error-backpropagation (EBP) algerithm for training multilayer perceptrons (MLPs) is known to have good features of robustness and economical efficiency. However, the algorithm has difficulty in selecting an optimal constant learning rate and thus results in non-optimal learning speed and inflexible operation for working data. This paper Introduces an elastic learning rate that guarantees convergence of learning and its local realization by online upoate of MLP parameters Into the original EBP algorithm in order to complement the non-optimality. The results of experiments on a speaker verification system with Korean speech database are presented and discussed to demonstrate the performance improvement of the proposed method in terms of learning speed and flexibility fer working data of the original EBP algorithm.

  • PDF

Recurrent Neural Network with Backpropagation Through Time Learning Algorithm for Arabic Phoneme Recognition

  • Ismail, Saliza;Ahmad, Abdul Manan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1033-1036
    • /
    • 2004
  • The study on speech recognition and understanding has been done for many years. In this paper, we propose a new type of recurrent neural network architecture for speech recognition, in which each output unit is connected to itself and is also fully connected to other output units and all hidden units [1]. Besides that, we also proposed the new architecture and the learning algorithm of recurrent neural network such as Backpropagation Through Time (BPTT, which well-suited. The aim of the study was to observe the difference of Arabic's alphabet like "alif" until "ya". The purpose of this research is to upgrade the people's knowledge and understanding on Arabic's alphabet or word by using Recurrent Neural Network (RNN) and Backpropagation Through Time (BPTT) learning algorithm. 4 speakers (a mixture of male and female) are trained in quiet environment. Neural network is well-known as a technique that has the ability to classified nonlinear problem. Today, lots of researches have been done in applying Neural Network towards the solution of speech recognition [2] such as Arabic. The Arabic language offers a number of challenges for speech recognition [3]. Even through positive results have been obtained from the continuous study, research on minimizing the error rate is still gaining lots attention. This research utilizes Recurrent Neural Network, one of Neural Network technique to observe the difference of alphabet "alif" until "ya".

  • PDF