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Abstract

The error-backpropagation (EBP) algorithm for training multilayer perceptrons (MLPs) is known to have good
features of robustness and economical efficiency. However, the algorithm has difficulty in selecting an optimal constant
learning rate and thus results in non-optimal learning speed and inflexible operation for working data. This paper
introduces an elastic learning rate that guarantees convergence of leaming and its local realization by online update of
MLP parameters into the original EBP algorithm in order to complement the non-optimality. The results of experiments on a
speaker verification system with Korean speech database are presented and discussed to demonstrate the performance
improvement of the proposed method in terms of learning speed and flexibility for working data of the original EBP

algorithm.

1. Introduction

The error-backpropagation (EBP) algorithm is prevailing in
multilayer-perceptron (MLP) learning. For training MLPs, the EBP
algorithm is widely used due to its robustness in overfitting and its
economical efficiency in terms of the number of learning parameters
and the size of required memory [1], {2). In the EBP algorithm,
selection of an appropriate constant learning rate is important for the
leaming speed and recognition rate of an MLP. In general, an “optimal”
learning rate lies within a range of “effective” leaming rates which
provide near-best performance [3). This range is obtained from testing
data and then applied to operating data, assuming that the properties of
the testing data are the same as those of the operating data.

‘We notice that the original EBP algorithm has a drawback in selecting
an optimal learning rate because it uses learning rates which are
constant, In reality, the optimal learning rate does change according to
the global and local progress of a given leaming experiment. The
learning rate in the initial stage of learning may be different from that of
the final stage. Leamning rates for various learning models may not be
the same even in the same stage of learning. Moreover, for the range of
effective learning rates, the properties of operating data are likely to be
different from those of testing data, conirary to the assumption
mentioned above. In this case, the optimal learning rate selected for the
testing data may be different from that for the operating data. Thus, it
would be more reliable to keep the effective range as broad as possible.
The original EBP algorithm keeps its learning rate constant for the
whole process of leaming, neglecting that proper leaming rate may
change with the progress of learning. This behavior of EBP results in
lazy leaming. Moreover, sticking to a constant learning rate tends to
narrow down the effective range where the optimal leaming rate can be
located. This defect would reduce the flexibility of the EBP algorithm
when applied to the operating data.

In this paper, we propose a modified EBP algorithm which adopts
“elastic” learning rates within a broad effective range in the online
update mode. The algorithm senses all the aspects of dynamicity in
MLP learning and applies appropriate learning rates according to the
progress of learning. The dynamic range of elastic learning rates is
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searched beforehand by applying a constant learning rate of the original
EBP, in order to assure the convergence of the given leaming. The
elastic learning rate catches the detailed progress of leaming, and the
online update of the MLP parameters realizes the leaming pattern by
pattern. This paper discusses the performance of the proposed method
through experiments using a speaker verification system based on MLPs
and a Korean speech database for connected four-digit speech.

2. MLP Learning with EBP and Its Non-optimality

MLPs learn models of learning by establishing decision boundaries
that discriminate the model areas. If patterns of models are fully
presented in an iterative manner and internal parameters of an MLP
are adjusted so that all patterns of each model are classified into their
corresponding model, the decision boundaries will finally be settled
within the optimal positions.

The commonly used EBP algorithm updates the weights of an MLP
using the information related to a given pattern and current weights
status as the following formulae:

w,(n+)=w;(n)+Aw,(n)

=w,(n)- %, ©
=w,(n)-n e

e, (m= lie,f(n) 2)
233

e (n)=d (n)—y.(n) (3)

here, w_ stands for weighted link from computational node j to
node i, n for update count of weighted link, ¢ for summation of
error energies from all output nodes for given patiern p , and e d,
and y, stand for error, learning objective output, and network output,
respectively, of output node k. M designates the number of output
nodes and 7 the learning rate determining how much portion of the
change of weighted link Aw,_ is applied to the update.

The objective of learning 1s in general designated to 1 if the output
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node corresponds to the model of the current pattern, or to 0 or -1
otherwise, according to whether the type of activation function is binary
or bipolar, respectively. Updates of weighted links continue until some
criteria are satisfied. For a typical case, the summation of ¢ s for all
leamning patterns goes down below a certain value. After leaming is
complete, the network outputs (each converging to its own objective)
are derived from the learned weighted links and the decision boundaries
are formed along the valleys between the peaks of all model areas.

To obtain the best discrimination of MLP and learning duration of the
all models with the EBP algorithm, distinct learning rates n’s must be
searched. Too large or too small 7 tends to lead poor discrimination and
long duration. In general, various 's need to be tested by decreasing
from large to small values (or vice versa) within a suitable range, and
the optimal 7 need to be selected to obtain the best discrimination and
shortest duration of learning.

However, the optimal 7 for the best learning changes according to
global and local progress of leamning. One epoch is the duration in
which all patterns to be leamed are presented once. As leaming epochs
proceed, the temporal value of n should decrease by large to prevent
the learning from oscillating around the desired objective. Even within a
single epoch, proper ;7 may differ from pattern to pattern because
individual leaming of a pattern progresses differently from those of
other patterns. The original EBP algorithm adopts a constant 77 and
does not consider such variation of learning progress, hence cannot
achicve the optimal leamning. That is, it cannot obtain both the best
discrimination and the shortest duration at once.

The optimal 7 is located within a range of effective n’s, which
provide near-best performance. This range is obtained from training
data and applied to working data, assuming that the properties of
training data are the same as those of working data. In reality, however,
the properties of working data are not necessarily the same as those of
training data, simply because the amount of the latter is generally larger
than that of the former and thus the latter has more variation.
Accordingly, the optimal 7 selected for training data may not guarantee
the best performance for working data. To obtain as high performance
for working data as possible, it is therefore important for the range of
effective 77°s to be as broad as possible so that more variation of
working data is prepared for.

3. Proposed Method

To enable the EBP algorithm to prepare for the variation of leaming
progress and the difference between training and working data of an
MLP, we present a modified EBP algorithm. The modification aims to
achieve three goals: (1) to guarantee the convergence of learning, (2) to
catch the progress of individual pattem, and (3) to realize the individual
progress of each pattern to MLP.

First, to guarantee the convergence of learning. To achieve this goal
we adopt a kind of “elastic” learning rate. By this means, dynamic
excitation by leaming pattems should not cause a given learning to
become distant from the desired objective. To acquire the final
convergence in learning, empirical information can be utilized that has
been obtained by previous searches for training data. In the proposed
method, we adopt the upper and lower limits of the constant learning
rates each of which has led to convergence in a preceding evaluation
using the original EBP algorithm. Any of elastic learning rates within
this range will guarantee convergence.

Second, to catch the individual progress of each learning pattern.
Establishing decision boundary can be analyzed by local error gradient
of model-specific output node. When the local error gradient of output
node k is designated as g, , the corresponding model generates &,
during learning and it repulses the decision boundary which is shaped
arbitrarily at the first stage of leaming, establishing it gradually as
borders of model areas. 8, is calculated by error ¢ ’ and the first differe-
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ntial function of output activation function ¢ . The value of the first
differential function is obtained from the weighted and summed input
v, to output node % . The calculus form of §, is expressed as follows:

S, =¢,¢'(v,) 4)

e, and ¢'(v,) yield significant values to the pattems located nearby
decision boundary and the patterns in the areas of other models except
the output node & over decision boundary. Learning continues until §,
is minimized for the given pattem and the value of §, shows how much
the pattern must be learned hereafier at a point of leaming time. Among
the ingredients of 5, , ¢, can more effectively present the progress of
leaming of a pattern due to its linearity as seen in Eqn 3, so it is adopted
to catch the individual progress of each learning pattern.

Third, to apply the individual progress of the given pattern to an MLP.
The offline update mode of the EBP algorithm calculates the changes of
weighted link vector for all learning patterns, averages them, end
updates the weighted link vector once per an epoch as follows:

N

w, (t+1) = w, (1) - L 0,00 ®)
N p=l aW,/ (’ )

where, ¢ stands for epoch count and N for the number of patterns
given during an epoch. Compared with the offline mode, the online
mode shown as Eqn. 1 updates the weighted link vector whenever the
change of weighted link vector is calculated for each pattern. In the
offline mode, all the patterns have to be learned with the same learning
rate. In the online mode, however, each pattern can have opportunity to
be leamned with the proper learning rate as to its local leamning progress
because of its property of pattern by pattern update.

The three means presented above construct the following formulae
for the update of weighted link vector in the proposed method:

ecz (1) = egs;
f(n)=——"2 6)
Rucr —eons
n(n) = {f () Ly i f) Ly > Liow o)
Liow otherwise
de_(n)
= - e (8)
wy(n+1)=w,(n)-n(n) 6wy (n)

where, ¢ c’(n) stands for error energy form of the error yielded by the
output node to where the given pattem belongs, R, ., for the possible
range of the error energy for the same output node, ¢, for the
objective error energy of given leamning, and Lyyen and Liow for the
upper and lower limit, respectively, such that the range established by
them guarantees the learning to converge. f(n) stands for error energy
normalization function to gauge the learning progress of the pattern and
normalize it into the range from 0 to 1. f(n) presents high values for
deficiently learned patterns and low values for sufficiently learred
patterns. 77(n) stands for elastic learning rate scaled from the
normalized error energy of the pattern into the range limited by £ HIGH
and [, .. Eqn. 8 is the finally obtained expression which the elastic
learning rate is adopted into the original EBP algorithm in the online
mode.

4. Performance Evaluation

The experiment aims to demonstrate the performance of the proposed
method as compared to the original EBP algorithm, using a speaker
verification system and conditions of experiment appeared in [4]. Here
we first obtain the best performance of the system using the original
online EBP algorithm and the optimized performance using the
proposed method. Then, the two methods are compared for leaming
duration and operationat flexibility to conclude that the proposed method
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exhibits superior performance.

In the results of our experiment, error rate stands for equal error rate,
and the number of learning epochs for average number of epochs used
to enroll a speaker for an isolated word. These values are calculated by
taking the average of values obtained from three trials of learning, each
trial being set to the same MLP conditions.

Fig. 1 depicts the changes in the performance of the system
implemented using the original online EBP algorithm, measured with
respect to various values of learning rate and objective error energy. The
values in the figure chase the trajectories of the numbers of learning
epochs and verification errors, with a fixed value of 0.01 for learning
objective error energy in the case of figure (a) and a fixed value of 0.5
for learning rate in the case of figure (b). In figure (a), the best leaing
rate, 0.5, is obtained when the number of learning epochs is 172.3 and
the error rate is 1.65 %. In figure (b), the best learning objective error
energy, 0.005, is obtained when the number of learning epochs is 301.5
and the error rate is 1.59 %.
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Fig. 1. Performance of the original online EBP algorithm for the ranges
of (a) learning rate and (b) objective error energy

Fig. 2 depicts the changes in the performance of the system
implemented using the proposed method, measured with respect to
various values of upper and lower limits. Note that all the performance
points in the figure assume a fixed value of 0.005 for (learning)
objective error energy. The values in the figure chase the trajectories of
the numbers of leamning epochs (figure (a)) and verification errors
(figure(b)), when the upper and lower limits are set to the combination
as depicted. These limits, especially the lower limits, have guaranteed
the convergence in the search of learning parameter with the original
online EBP. In figure (a), for every upper limit specified, the smallest
number of epochs is obtained when the lower limit is 0.5, and the best
such number is 214.5 when the upper limit is 2. In figure (b), any
particular relationships of the error rates to the upper and lower limits
are not found, but the error rates lie in a narrow range between 1.58 %
and 1.69 % for all combinations of the upper and lower limits. The best
perfurmance, number of epochs 255.2 and error rate 1.58 %, is
determined at the upper limit 2 and the lower limit 0.5 in the search.
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Fig. 2. Performance of the proposed method for various ranges of
upper and lower limits: (a) number of epochs and (b) error rate

Fig. 3 compares the best performance of the proposed method with
the original online EBP algorithm. Figure (2) compares them with
respect to number of epochs and error rate, and figure (b) shows the
rates of improvement in the number of epochs. Note that the
performance of the proposed method is shown for two different ranges
of upper and lower limits: [1..2] and [0.5..2]. In our experiment, the first
range achieves no increase in the error rate but the second range
increases the error rate by 0.08 % over the best error rate of the original
online EBP algorithm. Both ranges are meaningful, however, since
they all achieve the error energy, 0.005, imposed as learning objective.
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Fig. 3. (a) Performance comparison of the proposed method with the

original online EBP algorithm and (b) the rates of improvement in the

number of epochs
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The proposed method improves the number of epochs by 20 %
(approx.) with the first range and by 40 % (approx.) with the second
range over the original online EBP algorithm.

Fig. 4 shows the enhanced flexibility of the proposed method over the
original online EBP algorithm. For the range {0.1.2] of constmnt
leaming rates, the original algorithm shows the best performance of
301.5 for the number of epochs and 1.59 % for error rate, and the worst
performance of 1315.3 and 1.88 % respectively. For the range [0.1..2] of
lower limits with an upper limit added by 2 to a lower limit (i.e.,
keeping the length of the range as 2), the proposed method presents ihe
best performance of 209.4 and 1.63 %, respectively, and the worst
performance of 566.8 and 1.76 %, respectively, for the number of
epochs and error rate. The differential rates between the best and the
worst for the number of epochs and error rate are 336 % and 18 %,
respectively, with the original online EBP algorithm, and 166 % and
8 %, respectively, with the proposed method. From these numbers, we
can say that the flexibility of the proposed method is more than two
times of that of the original online EBP algorithm.
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Fig. 4. Enhanced flexibility of the proposed method over the original
online EBP algorithm for (a) number of epochs and (b) error rate

5. Conclusion

The results we have presented in this paper are good evidence to
verify the more fleet leaming and the higher pliability of the proposed
method over the original EBP algorithm. In spite of its high capability,
the original EBP algorithm suffers from slow learning for learning data
and difficulty in selecting an optimal learning rate for working data. To
reform these inferiorities, we have suggested the revised version of the
EBP algorithm and demonstrated the performance improvement through
the experiments of learning on the MLP-based speaker verification
system with the Korean speech database. The proposed method would
be useful for other MLP-applied signal processing system when the EBP
algorithm is adopted for leaming MLPs, as well as pattemn recognition
applications demonstrated in this paper.
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