• 제목/요약/키워드: Erosion properties

Search Result 293, Processing Time 0.029 seconds

Effect of Swine Liquid Manure and Phosphorus Application on Chemical Properties and Microbial Population of Italian (제주화산회토지역에서 돈분액비와 인산시용이 이탈리안 라이그라스 재배 토양의 화학적 특성 및 미생물상에 미치는 영향)

  • 김문철;현해남;최대진;문봉춘;고용구;강태숙
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.21 no.4
    • /
    • pp.181-190
    • /
    • 2001
  • This study was conducted to investigate the effect of swine liquid manure(SLM) and phosphorus fertilizer from September, 1998 to July, 1999 on the soil fertility on Italian ryegrass field, Cheju volcanic ash soil. pH(lst investigated), Mg (2nd investigated) and Cu content (2nd investigated) on soil grown by Italian ryegrass were significantly increased by an increase of fertilizer P(P

  • PDF

Chartacteristics of Water-bottom Reflection Coefficients in Bransfield Strait, Antarctic Peninsula (남극 브랜스필드 해협의 해저면 반사계수 특성)

  • Jin, Yeong Geun;Hong, Jong Guk;Lee, Deok Gi
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.4
    • /
    • pp.241-250
    • /
    • 1999
  • Reflection coefficients of the seafloor have been calculated from the amplitude ratio of secondary to primary water bottom reflection in seismic data obtained from Bransfield Strait, Antarctic Peninsula. Test processing for the coefficients shows that moving average is effective to reduce severe fluctuation of the coefficient measured at each point. Relationship between the coefficients and the properties of water bottom is analyzed to illuminate geological environment. In the central Bransfield Basin, the magnitude of reflection coefficients decreases as it is distant from the sedimentary sources. Reflection coefficients range from 0.12 to 0.2 near the continental slope of the basin, and from 0.1 to 0.12 in the basin floor. In the western Bransfield basin, reflection coefficients between 0.2 to 0.3 are obtained from the area eroded by glacial movement. On the volcanic structures near Deception Island, the coefficients show relatively high values more than 0.2. Paleo-geological structures uplifted by tectonic movement and outcropped by glacial erosion have relatively high coefficients.

  • PDF

The investigation of tracking resistant sheath material for ADSS Optic cable (ADSS 광 케이블 시스용 내 트래킹 재료의 특성에 관한 연구)

  • Lee, Jung-Hee;Seo, Il-Gun;Whang, Sun-Ho;Lee, Gun-Joo;Bak, Seung-Yup;Kim, Kyeung-Min;Lee, Seung-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.102-105
    • /
    • 2002
  • ADSS(All Dielectirc Self-Supporting) cable installed under high voltage power cable line suffers a variety of environmental influence, rain, wind, snow fall, chemical pollution, salt fog and electrical stress. Its lifetime is required to be at least 20 years with this harsh weathering condition. The electrical stress under high voltage power line gives rise to dry band arcing and tracking, the severest damage, on the outer sheath of cable. Finally tracking might penetrate sheath and cause the break-down of ADSS cable. Tracking resistant sheath material, therefore, should be used to protect the core of ADSS from dry band arcing and to be sure long lifetime. In this work, we discuss various commercial tracking resistant material to investigate the way of track resistance and compare their mechanical, electrical, weathering and tracking properties through serial experiments. We found track resistant material is categorized into two main type : polyethylene with metal hydroxide and polyethylene with reduced carbon black. The Liquid contaminant, Inclined plane Tracking and Erosion test says the time to track of tracking resistant material with metal hydroxide has a little longer time to track in the high applied voltage than that with carbon black, but mechanical and weathering properties were inferior to.

  • PDF

Ultrasonic Cavitation Behavior and its Degradation Mechanism of Epoxy Coatings in 3.5 % NaCl at 15 ℃

  • Jang, I.J.;Jeon, J.M.;Kim, K.T.;Yoo, Y.R.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.26-36
    • /
    • 2021
  • Pipes operating in the seawater environment faces cavitation degradation and corrosion of the metallic component, as well as a negative synergistic effect. Cavitation degradation shows the mechanism by which materials deteriorate by causing rapid change of pressure or high-frequency vibration in the solution, and introducing the formation and explosion of bubbles. In order to rate the cavitation resistance of materials, constant conditions have been used. However, while a dynamic cavitation condition can be generated in a real system, there has been little reported on the effect of ultrasonic amplitude on the cavitation resistance and mechanism of composites. In this work, 3 kinds of epoxy coatings were used, and the cavitation resistance of the epoxy coatings was evaluated in 3.5% NaCl at 15 ℃ using an indirect ultrasonic cavitation method. Eleven kinds of mechanical properties were obtained, namely compressive strength, flexural strength and modulus, tensile strength and elongation, Shore D hardness, water absorptivity, impact test, wear test for coating only and pull-off strength for epoxy coating/carbon steel or epoxy coating/rubber/carbon steel. The cavitation erosion mechanism of epoxy coatings was discussed on the basis of the mechanical properties and the effect of ultrasonic amplitude on the degradation of coatings.

Effects of mining activities on Nano-soil management using artificial intelligence models of ANN and ELM

  • Liu, Qi;Peng, Kang;Zeng, Jie;Marzouki, Riadh;Majdi, Ali;Jan, Amin;Salameh, Anas A.;Assilzadeh, Hamid
    • Advances in nano research
    • /
    • v.12 no.6
    • /
    • pp.549-566
    • /
    • 2022
  • Mining of ore minerals (sfalerite, cinnabar, and chalcopyrite) from the old mine has led in significant environmental effects as contamination of soils and plants and acidification of water. Also, nanoparticles (NP) have obtained global importance because of their widespread usage in daily life, unique properties, and rapid development in the field of nanotechnology. Regarding their usage in various fields, it is suggested that soil is the final environmental sink for NPs. Nanoparticles with excessive reactivity and deliverability may be carried out as amendments to enhance soil quality, mitigate soil contaminations, make certain secure land-software of the traditional change substances and enhance soil erosion control. Meanwhile, there's no record on the usage of Nano superior substances for mine soil reclamation. In this study, five soil specimens have been tested at 4 sites inside the region of mine (<100 m) to study zeolites, and iron sulfide nanoparticles. Also, through using Artificial Neural Network (ANN) and Extreme Learning Machine (ELM), this study has tried to appropriately estimate the mechanical properties of soil under the effect of these Nano particles. Considering the RMSE and R2 values, Zeolite Nano materials could enhance the mine soil fine through increasing the clay-silt fractions, increasing the water holding capacity, removing toxins and improving nutrient levels. Also, adding iron sulfide minerals to the soils would possibly exacerbate the soil acidity problems at a mining site.

Weathering Properties and Slope Stability Evaluations of Bedrock under the Chokseongnu Pavilion, Jinjuseong Fortress, Korea (진주성 촉석루 성곽지반의 풍화특성과 사면안정성 평가)

  • Jo, Young-Hoon;Lee, Myeong-Seong;Lee, Sun-Myung;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.20
    • /
    • pp.89-103
    • /
    • 2007
  • The bedrock beneath the Chokseongnu pavilion consists of sandstone with alternate dark-gray to light-brown siltstone and dark-gray shale of the Jinju Formation, where bedding is well developed toward the Chokseongmun gate. Large to small joints and overbreak from the erosion weathering have been developed in the bedrock. Besides, water leakage from development of discontinuity planes, fragmentation of shale, crack and joint by tree roots are observed on the bedrock. While shale and siltstone showed high sensitivity in physical and chemical weathering, respectively, sandstone indicated the highest weathering sensitivity in both. As the results of structural stability analysis, the whole bedrock has high instability in wedge failures, and especially section No. II slope is more instable than section No. I. Therefore, it is necessary for the bedrock to be strengthened by improvement method for soft foundations and the surface reinforcement. The trees causing mechanical collapse of the bedrock should be also removed and a water flow prevention measure or a water exhaust are required.

  • PDF

Enhancement of the Life of Refractories through the Operational Experience of Plasma Torch Melter (플라즈마토치 용융로 운전경험을 통한 내화물 수명 증진 방안)

  • Moon, Young Pyo;Choi, Jang Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.2
    • /
    • pp.169-178
    • /
    • 2016
  • The properties of wastes for melting need to be considered to minimize the maintenance of refractory and to discharge the molten slags smoothly from a plasma torch melter. When the nonflammable wastes from nuclear facilities such as concrete debris, glass, sand, etc., are melted, they become acid slags with low basicity since the chemical composition has much more acid oxides than basic oxides. A molten slag does not have good characteristics of discharge and is mainly responsible for the refractory erosion due to its low liquidity. In case of a stationary plasma torch melter with a slant tapping port on the wall, a fixed amount of molten slags remains inside of tapping hole as well as the melter inside after tapping out. Nonmetallic slags keep the temperature higher than melting point of metal because metallic slags located on the bottom of melter by specific gravity difference are simultaneously melted when dual mode plasma torch operates in transferred mode. In order to minimize the refractory erosion, the compatible refractories are selected considering the temperature inside the melter and the melting behavior of slags whether to contact or noncontact with molten slags. An acidic refractory shall not be installed in adjacent to a basic refractory for the resistibility against corrosion.

Analysis on the Restoration of Visiting Roads of Stream of Chilsun in Jirisan National Park (지리산국립공원내 칠선계곡 탐방로의 회복에 관한 분석)

  • Park, Jae-Hyeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.2
    • /
    • pp.105-113
    • /
    • 2010
  • To investigate the restoration procedure on soil physical properties at the surface of visiting road affected by rest-year system. This study was carried out at visiting roads of stream of Chilsun in Jirisan. Mean soil strength in 20cm of soil depth was lower in the Rest-Year System areas (1.5-1.9 times in Site 2, 1.1-7.5 times in Site 3) than in the control (Site 1). Soil strength was recovered by the Rest-Year System in the national park. Mesopore rate (pF 2.7) in 0-15 cm of soil depth was higher in the Rest-Year System areas (1.2 times) than in the control. This indicates that mesopore rate is rapidly restoring in the Rest-Year System areas. Pore space rate in 0-7.5 cm of soil depth was higher in the Rest-Year System areas (23.2% in Site 2, 23.6% in Site 3) than in the control (22.4% in Site 1). Pore space rate in 7.5-15 cm of soil depth was also higher in the Rest-Year System areas (22.9% in Site 2 and Site 3) than in the control (18.9% in Site 1). Soil pore space was remediable by the Rest-Year System. Bulk density in 0-7.5 cm of soil depth was lower in the Rest-Year System areas (1.674g/$cm^3$ in Site 2, 1.668g/$cm^3$ in Site 3) than in the control (1.723g/$cm^3$ in Site 1). Bulk density in 7.5-15 cm of soil depth was lower in the Rest-Year System areas (1.785g/$cm^3$ in Site 2 and 1.721g/$cm^3$ in Site 3) than in the control (1.721g/$cm^3$ in Site 1). Soil bulk density was decreased in the Rest-Year System areas of the national park. Amount of soil erosion was lower in the Rest-Year System areas ($0.017m^3$/km/yr in site 2, $0.023m^3$/km/yr in site 3) than in the control ($0.054m^3$/km/yr in site 1).

Poloxamer 407 Hydrogels for Intravesical Instillation to Mouse Bladder: Gel-Forming Capacity and Retention Performance

  • Kim, Sang Hyun;Kim, Sung Rae;Yoon, Ho Yub;Chang, In Ho;Whang, Young Mi;Cho, Min Ji;Kim, Myeong Joo;Kim, Soo Yeon;Lee, Sang Jin;Choi, Young Wook
    • The Korean Journal of Urological Oncology
    • /
    • 제15권3호
    • /
    • pp.178-186
    • /
    • 2017
  • Purpose: Poloxamer 407 (P407) thermo-sensitive hydrogel formulations were developed to enhance the retention time in the urinary bladder after intravesical instillation. Materials and Methods: P407 hydrogels (P407Gels) containing 0.2 w/w% fluorescein isothiocyanate dextran (FD, MW 4 kDa) as a fluorescent probe were prepared by the cold method with different concentrations of the polymer (20, 25, and 30 w/w%). The gel-forming capacities were characterized in terms of gelation temperature (G-Temp), gelation time (G-Time), and gel duration (G-Dur). Homogenous dispersion of the probe throughout the hydrogel was observed by using fluorescence microscopy. The in vitro bladder simulation model was established to evaluate the retention and drug release properties. P407Gels in the solution state were administered to nude mice via urinary instillation, and the in vivo retention behavior of P407Gels was visualized by using an in vivo imaging system (IVIS). Results: P407Gels showed a thermo-reversible phase transition at $4^{\circ}C$ (refrigerated; sol) and $37^{\circ}C$ (body temperature; gel). The G-Temp, G-Time, and G-Dur of FD-free P407Gels were approximately $10^{\circ}C-20^{\circ}C$, 12-30 seconds, and 12-35 hours, respectively, and were not altered by the addition of FD. Fluorescence imaging showed that FD was spread homogenously in the gelled P407 solution. In a bladder simulation model, even after repeated periodic filling-emptying cycles, the hydrogel formulation displayed excellent retention with continuous release of the probe over 8 hours. The FD release from P407Gels and the erosion of the gel, both of which followed zero-order kinetics, had a linear relationship ($r^2=0.988$). IVIS demonstrated that the intravesical retention time of P407Gels was over 4 hours, which was longer than that of the FD solution (<1 hour), even though periodic urination occurred in the mice. Conclusions: FD release from P407Gels was erosion-controlled. P407Gels represent a promising system to enhance intravesical retention with extended drug delivery.

Studies on the Mechanical Properties of Weathered Granitic Soil -On the Elements of Shear Strength and Hardness- (화강암질풍화토(花崗岩質風化土)의 역학적(力學的) 성질(性質)에 관(關)한 연구(硏究) -전단강도(剪斷强度)의 영향요소(影響要素)와 견밀도(堅密度)에 대(對)하여-)

  • Cho, Hi Doo
    • Journal of Korean Society of Forest Science
    • /
    • v.66 no.1
    • /
    • pp.16-36
    • /
    • 1984
  • It is very important in forestry to study the shear strength of weathered granitic soil, because the soil covers 66% of our country, and because the majority of land slides have been occured in the soil. In general, the causes of land slide can be classified both the external and internal factors. The external factors are known as vegetations, geography and climate, but internal factors are known as engineering properties originated from parent rocks and weathering. Soil engineering properties are controlled by the skeleton structure, texture, consistency, cohesion, permeability, water content, mineral components, porosity and density etc. of soils. And the effects of these internal factors on sliding down summarize as resistance, shear strength, against silding of soil mass. Shear strength basically depends upon effective stress, kinds of soils, density (void ratio), water content, the structure and arrangement of soil particles, among the properties. But these elements of shear strength work not all alone, but together. The purpose of this thesis is to clarify the characteristics of shear strength and the related elements, such as water content ($w_o$), void ratio($e_o$), dry density (${\gamma}_d$) and specific gravity ($G_s$), and the interrelationship among related elements in order to decide the dominant element chiefly influencing on shear strength in natural/undisturbed state of weathered granitic soil, in addition to the characteristics of soil hardness of weathered granitic soil and root distribution of Pinus rigida Mill and Pinus rigida ${\times}$ taeda planted in erosion-controlled lands. For the characteristics of shear strength of weathered granitic soil and the related elements of shear strength, three sites were selected from Kwangju district. The outlines of sampling sites in the district were: average specific gravity, 2.63 ~ 2.79; average natural water content, 24.3 ~ 28.3%; average dry density, $1.31{\sim}1.43g/cm^3$, average void ratio, 0.93 ~ 1.001 ; cohesion, $ 0.2{\sim}0.75kg/cm^2$ ; angle of internal friction, $29^{\circ}{\sim}45^{\circ}$ ; soil texture, SL. The shear strength of the soil in different sites was measured by a direct shear apparatus (type B; shear box size, $62.5{\times}20mm$; ${\sigma}$, $1.434kg/cm^2$; speed, 1/100mm/min.). For the related element analyses, water content was moderated through a series of drainage experiments with 4 levels of drainage period, specific gravity was measured by KS F 308, analysis of particle size distribution, by KS F 2302 and soil samples were dried at $110{\pm}5^{\circ}C$ for more than 12 hours in dry oven. Soil hardness represents physical properties, such as particle size distribution, porosity, bulk density and water content of soil, and test of the hardness by soil hardness tester is the simplest approach and totally indicative method to grasp the mechanical properties of soil. It is important to understand the mechanical properties of soil as well as the chemical in order to realize the fundamental phenomena in the growth and the distribution of tree roots. The writer intended to study the correlation between the soil hardness and the distribution of tree roots of Pinus rigida Mill. planted in 1966 and Pinus rigida ${\times}$ taeda in 199 to 1960 in the denuded forest lands with and after several erosion control works. The soil texture of the sites investigated was SL originated from weathered granitic soil. The former is situated at Py$\ddot{o}$ngchangri, Ky$\ddot{o}$m-my$\ddot{o}$n, Kogs$\ddot{o}$ng-gun, Ch$\ddot{o}$llanam-do (3.63 ha; slope, $17^{\circ}{\sim}41^{\circ}$ soil depth, thin or medium; humidity, dry or optimum; height, 5.66/3.73 ~ 7.63 m; D.B.H., 9.7/8.00 ~ 12.00 cm) and the Latter at changun-long Kwangju-shi (3.50 ha; slope, $12^{\circ}{\sim}23^{\circ}$; soil depth, thin; humidity, dry; height, 10.47/7.3 ~ 12.79 m; D.B.H., 16.94/14.3 ~ 19.4 cm).The sampling areas were 24quadrats ($10m{\times}10m$) in the former area and 12 in the latter expanding from summit to foot. Each sampling trees for hardness test and investigation of root distribution were selected by purposive selection and soil profiles of these trees were made at the downward distance of 50 cm from the trees, at each quadrat. Soil layers of the profile were separated by the distance of 10 cm from the surface (layer I, II, ... ...). Soil hardness was measured with Yamanaka soil hardness tester and indicated as indicated soil hardness at the different soil layers. The distribution of tree root number per unit area in different soil depth was investigated, and the relationship between the soil hardness and the number of tree roots was discussed. The results obtained from the experiments are summarized as follows. 1. Analyses of simple relationship between shear strength and elements of shear strength, water content ($w_o$), void ratio ($e_o$), dry density (${\gamma}_d$) and specific gravity ($G_s$). 1) Negative correlation coefficients were recognized between shear strength and water content. and shear strength and void ratio. 2) Positive correlation coefficients were recognized between shear strength and dry density. 3) The correlation coefficients between shear strength and specific gravity were not significant. 2. Analyses of partial and multiple correlation coefficients between shear strength and the related elements: 1) From the analyses of the partial correlation coefficients among water content ($x_1$), void ratio ($x_2$), and dry density ($x_3$), the direct effect of the water content on shear strength was the highest, and effect on shear strength was in order of void ratio and dry density. Similar trend was recognized from the results of multiple correlation coefficient analyses. 2) Multiple linear regression equations derived from two independent variables, water content ($x_1$ and dry density ($x_2$) were found to be ineffective in estimating shear strength ($\hat{Y}$). However, the simple linear regression equations with an independent variable, water content (x) were highly efficient to estimate shear strength ($\hat{Y}$) with relatively high fitness. 3. A relationship between soil hardness and the distribution of root number: 1) The soil hardness increased proportionally to the soil depth. Negative correlation coefficients were recognized between indicated soil hardness and the number of tree roots in both plantations. 2) The majority of tree roots of Pinus rigida Mill and Pinus rigida ${\times}$ taeda planted in erosion-controlled lands distributed at 20 cm deep from the surface. 3) Simple linear regression equations were derived from indicated hardness (x) and the number of tree roots (Y) to estimate root numbers in both plantations.

  • PDF