• Title/Summary/Keyword: Erosion depth

Search Result 267, Processing Time 0.031 seconds

Electrochemical Characteristics with Cavitation Amplitude Under Cavitation Erosion of 6061-T6 in Seawater (Al 6061-T6 합금의 해수 내 캐비테이션 진폭에 따른 캐비테이션-침식 조건하에서 전기화학적 특성)

  • Hwang, Hyun-Kyu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.318-325
    • /
    • 2020
  • Generally, Al alloys of 5000 and 6000 series show excellent weldability, workability, and specific strength, and are widely used in ship building. A combined experiment via cavitation erosion and corrosion damage involving 6061-T6 Al alloy was performed using potentiodynamic polarization under cavitation erosion (hybrid experiments) with amplitude (cavitation strength). The corrosion current density was approximately 52-fold higher at 30 μm than under static conditions, suggesting that the amplitude greatly affected the damage. The degree of damage increased with increasing cavitation amplitude. After the hybrid experiment, the corrosion rate was compared according to the weight loss and damage depth, and the relationship between the two values was expressed as alpha value. The alpha (α) values at amplitudes of 5 μm, 10 μm and 30 μm were 5.11, 12.81 and 8.74, respectively, suggesting that the α value at 10 μm was greater than at 5 μm, and indicating local corrosion damage. However, the α value at 30 μm was smaller than that of 10 μm, which is attributed to higher damage via uniform corrosion than damage induced by local corrosion.

Electrochemical and Cavitation-Erosion Characteristics of Duplex Stainless Steels in Seawater Environment (해수 환경에서 듀플렉스 스테인리스강의 전기화학적 거동 및 캐비테이션 특성)

  • Heo, Ho-Seong;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.466-474
    • /
    • 2021
  • A wet type scrubber for merchant vessel uses super austenitic stainless steels with pitting resistance equivalent number (PREN) of 40 or higher for operation in a harsh corrosive environment. However, it is expensive due to a high nickel content. Thus, electrochemical behavior and cavitation erosion characteristics of UNS S32750 as an alternative material were investigated. Microstructure analysis revealed fractions of ferritic and austenitic phases of 48% and 52%, respectively, confirming the existence of ferritic matrix and austenitic island. Potentiodynamic polarization test revealed damage at the interface of the two phases because of galvanic corrosion due to different chemical compositions of ferritic and austenitic phases. After a cavitation test, a compressive residual stress was formed on the material surface due to impact pressure of cavity. Surface hardness was improved by water cavitation peening effect. Hardness value was the highest at 30 ㎛ amplitude. Scanning electron microscopy revealed wave patterns due to plastic deformation caused by impact pressure of the cavity. The depth of surface damage increased with amplitude. Cavitation test revealed larger damage caused by erosion in the ferritic phase due to brittle fracture derived from different strain rate sensitivity index of FCC and BCC structures.

Development of design chart for estimating penetration depth of dynamically installed Hall anchors in soft clays

  • Haijun Zhao;Zhaohan Zhu;Jiawei Che;Wanchun Chen;Qian Yin;Dongli Guo;Haiyang Hu;Shuang Dong
    • Geomechanics and Engineering
    • /
    • v.34 no.2
    • /
    • pp.209-220
    • /
    • 2023
  • In this study, a series of three-dimensional numerical analyses were carried out to investigate the penetration performance of a dynamically installed Hall anchor. The advanced coupled Eulerian-Lagrangian (CEL) technique was adopted to accurately simulate the large soil deformation during the vertical penetration of a Hall anchor. In total, 52 numerical analyses were conducted to investigate the relationship between anchor penetration depth and the initial kinematic energy. Moreover, a sensitivity analysis was performed to investigate the effects of soil shear strength and soil type on the penetration mechanism of a drop anchor under self-weight. There is a monotonic increase in the penetration depth with an increasing anchor weight when the topsoil of the riverbed is not subjected to erosion. On the other hand, all the computed depths significantly increase when soil erosion is taken into consideration. This is mainly due to an enhanced initial kinematic energy from an increased dropping depth. Both depths increase exponentially with the initial kinematic energy. An enhanced shear strength can potentially increase the side resistance and end-bearing pressure around a drop anchor, thus significantly reducing the downward penetration of a hall anchor. Design charts are developed to directly estimate penetration depth and associated plastic zone due to dynamically installed anchor at arbitrary soil shear strength and anchor kinematic energy.

Effect of Microstructure Control on the Tensile and Erosion Properties of 3527/4343 Aluminum Clad (3527/4343 알루미늄 클래드재의 인장 및 침식특성에 미치는 미세조직 제어의 영향)

  • Euh, K.;Kim, S.H.;Kim, H.W.;Kim, D.B.;Oh, Y.M.
    • Transactions of Materials Processing
    • /
    • v.22 no.5
    • /
    • pp.264-268
    • /
    • 2013
  • Aluminum clad sheets for brazing materials in the automotive heat exchangers are required to exhibit both high strength and excellent erosion resistance. In this study, the effects of microstructural changes on the property of clad sheets due to thermomechanical treatment were investigated. The clad sheets were fabricated by roll bonding of twin-roll-cast AA3527 and AA4343 alloys followed by cold rolling down to a thickness of 0.22mm. Partial or full annealing was conducted at the final thickness in order to improved the erosion resistance while keeping the proper strength. Since full annealing was achieved for a temperature of $400^{\circ}C$, annealing treatments were performed at 360, 380, and $400^{\circ}C$, respectively. The tensile strength of 3527/4343 clad material was found to be inversely proportional to the annealing temperature before the brazing heat treatment. After this latter treatment, however, the tensile strength of the clad material was about 195~200MPa regardless of the annealing temperature. The erosion depth ratio of the clad annealed at $400^{\circ}C$ was 8.8% (the lowest), while that of the clad annealed at $380^{\circ}C$ was 17% (the highest). The effect of annealing temperature on the tensile and erosion properties of 3527/4343 aluminum clad sheets was elucidated by means of microstructural analyses.

Experimental Study of Shape and Pressure Characteristics of Solitary Wave generated by Sluice Gate for Various Conditions (Sluice Gate를 이용한 고립파 발생조건에 따른 형상 및 압력 특성에 관한 실험적 연구)

  • Cho, Jae Nam;Kim, Dong Hyun;Lee, Seung Oh
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.2
    • /
    • pp.70-75
    • /
    • 2016
  • Recently, coastal erosion has been widely in progress and the erosion level becomes also serious in the world wide, espeically in East Sea in Korea. Since it would threaten the life, economics and security risk, it is necessary to much comprehend the reason why coastal erosion has occurred according to the geographical characteristics. Meanwhile, analysis about hydrodynamics of the solitary wave such as tunami in swash zone is needed for the best management practice of coastal erosion. Solitary wave is nonlinear wave and can be reproduced in the laboratoy scale by openning suddenly a sluice gate with water head difference, of which methodology was found in the literature, since it could be simply determined by a significant wave height. Thus, in this sutdy the generation of solitary wave was experimentalized using the sluice gate. Experimental conditions were classified by angles of a beach slope, a water level in a beach slope and a difference of water level between in a headtank and a channel bed. Two kinds of dimensionless analyses based from experimental results in this study were presented; the first analysis indicates nondimensionalization between the wave height and the water level in a beach slope in order to investigate characteristics of solitary wave approaching the beach. The second shows the other nondimensionalization between dynamic pressure and static pressure on a beach slope to investigate the relationship between wave breaking and wave pressure. Under the same conditions as laboratory experiments, the numerical results computed with a SWAN model embedded in FLOW 3D were compared in terms of wave height, and pressure on the beach slope, which shows good agreement with each other. Overall results from this study could provide fundamental hydraulic data for the reliabile verification of numerical simulation results about coastal erosion in swash zone caused by solitary waves.

Optimum Scale Evaluation of Sedment Basin Design by Soil Erosion Estimation at Small Basin (소유역의 토사유실량에 따른 유사저류지 설계적정성 검토)

  • Lee, Sang-Jin;Choi, Hyun;Kwak, Young-Joo;Lee, Bae-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.2 s.40
    • /
    • pp.25-31
    • /
    • 2007
  • The recent frequent heavy rainfall has caused an increased in soil erosion and the soil drain which drained soil has caused decreased in channel radius and environmental problems by turbidity. In this study, the optimum size of the sediment basin was tested with soil erosion estimated from the Universal Soil Loss Equation (USLE) in the basin using by GIS data. The results show that the estimated soil erosion and the designed soil deposit are $72.1\;m^3$ and $85.0\;m^3$ respectively and the size of sediment basin is proper. In this study the water depth was calculated from the Hec-Ras model to test the stability of the bank and to prove submersion of the inside fields from stream overflow.

  • PDF

Erosion Behavior of YAG Ceramics under Fluorine Plasma and their XPS Analysis (불소계 플라즈마에 노출된 YAG 세라믹스의 식각거동 및 XPS 분석)

  • Kim, Kyeong-Beom;Kim, Dae-Min;Lee, Jung-Ki;Oh, Yoon-Suk;Kim, Hyung-Tae;Kim, Hyung-Sun;Lee, Sung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.456-461
    • /
    • 2009
  • Chemical composition and status of chemical bonding of the YAG($Y_3Al_5O_{12}$) ceramics after the exposure to fluorine plasma have been investigated using X-ray photoelectron spectroscopy, with the analysis on its erosion behavior. On the surface, F showed the maximum content, decreasing with depth, meanwhile the cation composition remained almost constant, irrespective of the position. The peaks due to Y in the reaction layer consisted of two kinds, showing the Y-O and Y-F bonds. These surface modifications under fluorine plasma seem to promote the erosion of the YAG ceramics. Excess addition of $Al_2O_3$ or $Y_2O_3$ into stoichiometric YAG produced 2nd phases of $Al_2O_3$ and $YAlO_3$, respectively, resulting in the slight difference in the local erosion rates. But, the overall average erosion rate was not sensitive to such excess additions of $Al_2O_3$ or $Y_2O_3$.

Micro-Pattern Machining Characteristics Evaluation of $Si_3N_4$-hBN based Machinable Ceramics Using Powder Blasting Process (파우더 블라스팅에 의한 $Si_3N_4$-hBN계 머시너블 세라믹스의 미세패턴 가공성 평가)

  • 박동삼;조명우;김동우;조원승
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.33-39
    • /
    • 2004
  • Sandblasting has recently been developed into a powder blasting technique for brittle materials. In this study, the machinability of $Si_3N_4$-hBN based machinable ceramics are evaluated for micro - pattern making processes using powder blasting. Material properties of the developed machinable ceramics according to the variation of h-BN contents give a good machinability to the ceramics. The effect of scanning times, the size of patterns and variation of BN contents on the erosion depth of samples without mask and samples with different mask patterns in powder blasting of $Si_3N_4$-hBN ceramics are investigated. The Parameters are the impact angle of $90^{\circ}$, the scanning times of nozzle up to 40, and the stand-off distances of 100mm The widths of masked pattern are 0.1mm 0.5mm and 1mm. The powder used is Alumina particles, WA#600. and the blasting pressure of powder is 0.2MPa. Through required experiments, the results are investigated and analyzed. As the results, the machinability of the developed ceramics increases as the BN contents in the ceramics.

A Case Study of Pier Scour Considering Soil Erodibility (지반의 침식특성을 이용한 교각세굴 사례 연구)

  • 곽기석;정문경;이주형;박재현
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.67-74
    • /
    • 2004
  • A case study was performed to verify the applicability of existing formulae for predicting bridge scour in cases where its piers are founded in fine-grained soils. The object of study was the Kanghwa Choji Bridge area where the streambed consists of mainly clayey soil. Site investigation included: direct measurement of scour depths around piers using an ultrasonic probe; and collection of undisturbed soil samples which were later used to determine geotechnical properties and scour rate under different stream velocities. Scour depth prediction was made by employing several conventional methods and compared with the measured value. All methods, not taking soil's intrinsic property against erosion into consideration, overestimated scour depth by a factor of 3.6 to 6.5. On the other hand, the SRICOS method yielded a reasonably acceptable overestimation by a factor of 1.7.

Meander Flume Outlet Sediment Scour Analysis of a Boxed Culvert

  • Thu Hien Thi Le;VanChienNguyen;DucHauLe
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.35-35
    • /
    • 2023
  • The main reason for its instability is sediment scouring downstream of hydraulic structures. Both physical and numerical models have been used to investigate the influence of soil properties on scour hole geometry. Nevertheless, no research has been conducted on resistance parameters that affect sedimentation and erosion. In addition, auxiliary structures like wing walls, which are prevalent in many real-world applications, have rarely been studied for their impact on morphology. The hydraulic characteristics of steady flow through a boxed culvert are calibrated using a 3D Computational Fluid Dynamics model compared with experimental data in this study, which shows a good agreement between water depth, velocity, and pressure profiles. Test cases showed that 0.015 m grid cells had the lowest NRMSE and MAE values. It is also possible to quantify sediment scour numerically by testing roughness/d50 ratios (cs) and diversion walls at a meander flume outlet. According to the findings, cs = 2.5 indicates a close agreement between numerical and analytical results of maximum scour depth after the culvert; four types of wing walls influence geometrical deformation of the meander flume outlet, resulting in erosion at the concave bank and deposition at the convex bank; two short headwalls are the most appropriate solution for accounting for small changes in morphology. A numerical model can be used to estimate sediment scour at the meander exit channel of hydraulic structures based on the roughness parameter of soil material and headwall type.

  • PDF