• Title/Summary/Keyword: Erosion

Search Result 2,993, Processing Time 0.029 seconds

Comparing Erosion-Corrosion Behaviors of Carbon Steel and Hadfield Steel According to Pipe Forming (탄소강 및 해드필드강의 파이프 조관에 따른 침식부식 거동에 대한 비교연구)

  • Yun, Duck Bin;Park, Jin Sung;Lee, Sang Cheol;Choi, Jong Gyo;Hwang, Joong Ki;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.209-220
    • /
    • 2022
  • Erosion-corrosion behaviors of Hadfield steel under a neutral aqueous environment with fine SiO2 particles were examined and compared with those of conventional carbon steel. A range of electrochemical experiments (potentiodynamic polarization, linear polarization, and impedance), immersion test, and slurry pot test (i.e., erosion-corrosion test) were performed. Results showed that the Hadfield steel composed of austenitic matrix with (Fe,Mn)-based carbide had lower corrosion potential and higher corrosion current density than carbon steel with a typical ferrite/pearlite structure. In addition, pipe forming increased total corrosion rates (i.e., pure corrosion and erosion-enhanced corrosion rates). Nevertheless, the erosion-corrosion rate of Hadfield steel was much smaller. Morphological observation showed that local damage in the form of a crater by erosion-corrosion was more noticeable in carbon steel. The higher resistance of Hadfield steel to erosion-corrosion was attributed to its lower total erosion rates (i.e., pure erosion and corrosion-enhanced erosion rates) highly depending on surface hardness. This study suggests that Hadfield steel with higher resistances to flowing erosion-corrosion in an aqueous environment can be applied widely to various industrial fields.

A Survey on the Prevalence and Risk Indicators of Dental Erosion among 13-15 Year Old Adolescents in Yangsan, Korea (양산시 거주 13-15세 학생의 치아침식증 유병율과 위험요소)

  • Noh, Taehwan;Lee, Guemlang;Kim, Jiyeon;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.43 no.3
    • /
    • pp.264-274
    • /
    • 2016
  • It is a trend that carbonated drink intake among adolescents is increasing, which makes young people more vulnerable to dental erosion. However, in Korea, public knowledge about dental erosion is very insufficient. The aim of this study was to investigate the prevalence of dental erosion and to assess its risk indicators among 13-15 years old students in Yangsan, Korea. A total of 1,371 adolescents were examined by one calibrated clinician. Dental erosion was assessed by using the Visual Erosion Dental Examination system. Correlation between their dietary habit, oral hygiene and dental erosion was assessed. The data showed that 676 (49.3%) adolescents had dental erosion. The prevalence of dental erosion was significantly higher in females than in males. The prevalence of tooth erosion in mandible is higher than in maxilla. Dental erosion was generalized to develop mostly on anterior teeth, especially lateral incisor, however, the severity score was highest in canines. Following questionnaire analysis, dental erosion was significantly associated with milk and flavored milk. No other associations were detected. The prevalence of dental erosion in this study is higher than those of previous reports. On the contrary to previously reported studies, the prevalence of dental erosion in females is higher than in males.

Digital simulation model for soil erosion and Sediment Yield from Small Agricultural Watersheds(I) (농업 소류역으로부터의 토양침식 및 유사량 시산을 위한 전산모의 모델 (I))

  • 권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.4
    • /
    • pp.108-114
    • /
    • 1980
  • A deterministic conceptual erosion model which simulates detachment, entrainment, transport and deposition of eroded soil particles by rainfall impact and flowing water is presented. Both upland and channel phases of sediment yield are incorporated into the erosion model. The algorithms for the soil erosion and sedimentation processes including land and crop management effects are taken from the literature and then solved using a digital computer. The erosion model is used in conjunction with the modified Kentucky Watershed Model which simulates the hydrologic characteristics from watershed data. The two models are linked together by using the appropriate computer code. Calibrations for both the watershed and erosion model parameters are made by comparing the simulated results with actual field measurements in the Four Mile Creek watershed near Traer, Iowa using 1976 and 1977 water year data. Two water years, 1970 and 1978 are used as test years for model verification. There is good agreement between the mean daily simulated and recorded streamflow and between the simulated and recorded suspended sediment load except few partial differences. The following conclusions were drawn from the results after testing the watershed and erosion model. 1. The watershed and erosion model is a deterministic lumped parameter model, and is capable of simulating the daily mean streamflow and suspended sediment load within a 20 percent error, when the correct watershed and erosion parameters are supplied. 2. It is found that soil erosion is sensitive to errors in simulation of occurrence and intensity of precipitation and of overland flow. Therefore, representative precipitation data and a watershed model which provides an accurate simulation of soil moisture and resulting overland flow are essential for the accurate simulation of soil erosion and subsequent sediment transport prediction. 3. Erroneous prediction of snowmelt in terms of time and magnitute in conjunction with The frozen ground could be the reason for the poor simulation of streamflow as well as sediment yield in the snowmelt period. More elaborate and accurate snowmelt submodels will greatly improve accuracy. 4. Poor simulation results can be attributed to deficiencies in erosion model and to errors in the observed data such as the recorded daily streamflow and the sediment concentration. 5. Crop management and tillage operations are two major factors that have a great effect on soil erosion simulation. The erosion model attempts to evaluate the impact of crop management and tillage effects on sediment production. These effects on sediment yield appear to be somewhat equivalent to the effect of overland flow. 6. Application and testing of the watershed and erosion model on watersheds in a variety of regions with different soils and meteorological characteristics may be recommended to verify its general applicability and to detact the deficiencies of the model. Futhermore, by further modification and expansion with additional data, the watershed and erosion model developed through this study can be used as a planning tool for watershed management and for solving agricultural non-point pollution problems.

  • PDF

A Study of Damage on the Pipe Flow Materials Caused by Solid Particle Erosion (고체입자 충돌침식으로 인한 배관 재질의 손상에 관한 연구)

  • Kim, Kyung-Hoon;Choi, Duk-Hyun;Kim, Hyung-Joon
    • Corrosion Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.130-138
    • /
    • 2014
  • Wall thinning can be classified into three types: flow-accelerated corrosion, cavitation erosion and solid particle erosion. This article presents a study of solid particle erosion, which frequently causes damages to power plants' pipe system. Unlike previous studies, this study uses a mechanism to make solid particles in a fluid flow collide with pipe materials in underwater condition. Experiment is conducted in three cases of velocity according to solid-water ratio using the three types of the materials of A106B, SS400, and A6061. The experiments were performed for 30 days, and the surface morphology and hardness of the materials were examined for every 7 days. Based on the velocity change of the solid particles in a fluid flow, the surface changes, the change in the amount of erosion, the erosion rate and the variation in the hardness of carbon steel and aluminum family pipe materials can all be determined. In addition, factor-based erosion rates are verified and a wall-thinning relation function is suggested for the pipe materials.

Research on Environmentally-Sound Erosion Control Works(I) -Environment-oriented erosion control works in Japan- (환경(環境)과 조화한 사방사업(砂防事業)(I) - 일본의 환경보전사방(環境保全砂防) -)

  • Chun, Kun-Woo;Ezaki, Tsugio
    • Journal of Forest and Environmental Science
    • /
    • v.12 no.1
    • /
    • pp.13-25
    • /
    • 1996
  • In recent erosion control works, securing not only the disaster prevention space but the environmental space, harmonized with surrounding environment and abundant with biological resources, are emphasized. Inspired of by the fact that efforts to secure such spaces have been being briskly promoted in Japan since the beginning of 1990s', we compile and analyze the Japanese sources about the "environmentally-sound erosion control works" to contribute to the erosion control works of our country. Specifically, in this report, we deal with the subjects of "establishment of the comfortable river environment" and "environmentally-sound erosion control works" which includes "erosion control dam", "water channel works and revetments", "fish routes" and "water quality conservation works".

  • PDF

Study on Erosion Characteristics of Aged HK40 Steel (열화된 HK40강의 마식특성에 관한 연구)

  • Kim, Am-Kee;Chun, Yong-Du;Lee, Kum-Bae;Kim, Chang-Hoon;Nahm, Seung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.403-408
    • /
    • 2003
  • The erosion behavior of :artificially aged HK40 steel was investigated. Erosion tests were conducted at room temperature, $200^{\circ}C$ and $400^{\circ}C$ using $Al_2O_3$ particles. Erosion rates increased with increment of temperature. The maximum erosion rate increased with the impingement angle of 30 degree. The erosion rate increased, reached the maximum at 1000 hours, and after that, decreased with heat treatment time. The mechanism of erosion seems to be the cutting wear which is very much associated with the strength of material. As results, the erosion rates were rather affected by the tensile strength and the strain hardening coefficient than the hardness and the yield strength. Such changes of material properties would be caused by the change of micro-structure due to the precipitation of carbide and the dissolution of solid element within matrix during the heat treatment.

  • PDF

Study on IPT Characteristics of LSR / Nano Silica Composites for HVDC (HVDC용 LSR/Nano Silica Composites의 IPT특성 연구)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.61-68
    • /
    • 2019
  • Only the power is converted from AC to DC, in accordance with IEC 60587 based test method, in order to develop the LSR(Liquid Silicone Rubber) insulator material for HVDC, the experiment of Inclined Plate Tracking and Erosion Resistance was conducted. A contaminant (2.5 mS/cm: ammonium chloride) was applied at a rate of 0.3 ml/min and a voltage of ${\pm}3.5kV$, and was evaluated on the basis of 60 mA/2s. The samples were prepared by dispersing LSR/Nano silica_25wt% Composites in LSR. The erosion phenomena of surface discharge and tracking due to DC polarity and negative polarity were measured by image, leakage current maximum and thermal camera. The thermal imaging camera measured the surface temperature generated by the joule heat of the leakage current due to the drying discharge and the conductive current. After the measurement, the tracking and erosion mechanisms were evaluated for erosion weight, erosion depth and erosion length. Positive and negative polarity of LSR/Nano Silica_25wt% composite Tracking and erosion results show that positive polarity is more severe than negative polarity.

Comparison of Annual Soil Loss using USLE and Hourly Soil Erosion Evaluation System (USLE모형과 시강우를 고려한 토양유실 평가 시스템을 이용한 연간 토양유실량 비교 분석)

  • Kum, Dong-Hyuk;Ryu, Ji-Chul;Kang, Hyun-Woo;Jang, Chun-Hwa;Shin, Min-Hwan;Shin, Dong-Shuk;Choi, Joong-Dae;Lim, Kyoung-Jae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.991-997
    • /
    • 2011
  • Soil erosion and sediment has been known as one of pollutants causing water quality degradation in water bodies. With global warming issues worldwide, various soil erosion studies have been performed. Although on-site monitoring of sediment loss would be an ideal method to evaluate soil erosion condition, modeling approaches have been utilized to estimate soil erosion and to evaluate various best management practices on soil erosion reduction. Although the USLE has been used in soil erosion estimation for the last 40 years, the USLE model has limitations in estimating event-based soil erosion reflecting rainfall intensity and rainfall duration for long-term period. Thus, the calibrated model, capable of simulating soil erosion using hourly rainfall data, was utilized in this study to evaluate the effects of rainfall amount and rainfall intensity on soil erosion. It was found that USLE soil erosion value is $3.06ton\;ha^{-1}\;yr^{-1}$, while soil erosion values from 2006~2010 were $2.469ton\;ha^{-1}\;yr^{-1}$, $0.882ton\;ha^{-1}\;yr^{-1}$, $1.489ton\;ha^{-1}\;yr^{-1}$, $2.158ton\;ha^{-1}\;yr^{-1}$, $1.602ton\;ha^{-1}\;yr^{-1}$, respectively. Especially, soil erosion from single storm event for 2008-2010 would be responsible for 30% or more of annual soil loss. As shown in this study, hourly soil erosion estimation system would provide more detailed output from the study area. In addition, the effects of rainfall intensity on soil erosion could be evaluated with this system.

Application of SPOT 5 Satellite Image and Landcover Map for the examination of Soil Erosion Source Area (토사유실 원인지역 검토를 위한 SPOT 5 위성영상과 토지피복도의 활용)

  • Lee, Geun-Sang;Park, Jin-Hyeog;Hwang, Eui-Ho;Koh, Deuk-Koo
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.11
    • /
    • pp.927-935
    • /
    • 2005
  • Soil erosion by rainfall is important factor for basin management because it reduces reservoir capacity and breaks out the contamination of water caused by turbid water. Recently, soil erosion study with GIS is in progress but does not consider soil erosion source area. This study calculated soil erosion amount using GIS-based soil erosion model in Imha basin and examined soil erosion source area using SPOT 5 High-resolution satellite image and land cover map. As a result of analysis, dry field showed high-density soil erosion area and we could easily investigate source area using satellite image. Also we could examine the suitability of soil erosion area by applying field survey method in common areas such as dry field and orchard area those are difficult to confirm soil erosion source area using satellite image.

Remote Sensing Information Models for Sediment and Soil

  • Ma, Ainai
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.739-744
    • /
    • 2002
  • Recently we have discovered that sediments should be separated from lithosphere, and soil should be separated from biosphere, both sediment and soil will be mixed sediments-soil-sphere (Seso-sphere), which is using particulate mechanics to be solved. Erosion and sediment both are moving by particulate matter with water or wind. But ancient sediments will be erosion same to soil. Nowadays, real soil has already reduced much more. Many places have only remained sediments that have ploughed artificial farming layer. Thus it means sediments-soil-sphere. This paper discusses sediments-soil-sphere erosion modeling. In fact sediments-soil-sphere erosion is including water erosion, wind erosion, melt-water erosion, gravitational water erosion, and mixed erosion. We have established geographical remote sensing information modeling (RSIM) for different erosion that was using remote sensing digital images with geographical ground truth water stations and meteorological observatories data by remote sensing digital images processing and geographical information system (GIS). All of those RSIM will be a geographical multidimensional gray non-linear equation using mathematics equation (non-dimension analysis) and mathematics statistics. The mixed erosion equation is more complex that is a geographical polynomial gray non-linear equation that must use time-space fuzzy condition equations to be solved. RSIM is digital image modeling that has separated physical factors and geographical parameters. There are a lot of geographical analogous criterions that are non-dimensional factor groups. The geographical RSIM could be automatic to change them analogous criterions to be fixed difference scale maps. For example, if smaller scale maps (1:1000 000) that then will be one or two analogous criterions and if larger scale map (1:10 000) that then will be four or five analogous criterions. And the geographical parameters that are including coefficient and indexes will change too with images. The geographical RSIM has higher precision more than mathematics modeling even mathematical equation or mathematical statistics modeling.

  • PDF