DOI QR코드

DOI QR Code

Comparing Erosion-Corrosion Behaviors of Carbon Steel and Hadfield Steel According to Pipe Forming

탄소강 및 해드필드강의 파이프 조관에 따른 침식부식 거동에 대한 비교연구

  • Yun, Duck Bin (Department of Advanced Materials Engineering, Sunchon National University) ;
  • Park, Jin Sung (Department of Advanced Materials Engineering, Sunchon National University) ;
  • Lee, Sang Cheol (POSCO Technical Research Laboratories) ;
  • Choi, Jong Gyo (POSCO Technical Research Laboratories) ;
  • Hwang, Joong Ki (School of Mechatronics Engineering, Korea University of Technology & Education) ;
  • Kim, Sung Jin (Department of Advanced Materials Engineering, Sunchon National University)
  • 윤덕빈 (순천대학교 신소재공학과) ;
  • 박진성 (순천대학교 신소재공학과) ;
  • 이상철 (포스코기술연구원) ;
  • 최종교 (포스코기술연구원) ;
  • 황중기 (한국기술교육대학교메카트로닉스공학부) ;
  • 김성진 (순천대학교 신소재공학과)
  • Received : 2022.06.08
  • Accepted : 2022.06.17
  • Published : 2022.06.30

Abstract

Erosion-corrosion behaviors of Hadfield steel under a neutral aqueous environment with fine SiO2 particles were examined and compared with those of conventional carbon steel. A range of electrochemical experiments (potentiodynamic polarization, linear polarization, and impedance), immersion test, and slurry pot test (i.e., erosion-corrosion test) were performed. Results showed that the Hadfield steel composed of austenitic matrix with (Fe,Mn)-based carbide had lower corrosion potential and higher corrosion current density than carbon steel with a typical ferrite/pearlite structure. In addition, pipe forming increased total corrosion rates (i.e., pure corrosion and erosion-enhanced corrosion rates). Nevertheless, the erosion-corrosion rate of Hadfield steel was much smaller. Morphological observation showed that local damage in the form of a crater by erosion-corrosion was more noticeable in carbon steel. The higher resistance of Hadfield steel to erosion-corrosion was attributed to its lower total erosion rates (i.e., pure erosion and corrosion-enhanced erosion rates) highly depending on surface hardness. This study suggests that Hadfield steel with higher resistances to flowing erosion-corrosion in an aqueous environment can be applied widely to various industrial fields.

Keywords

Acknowledgement

순천대학교 교연비 사업에 의하여 연구되었음

References

  1. C. Chen, B. Lv, H. Ma, D. Sun, and F. Zhang, Wear behavior and the corresponding work hardening characteristics of Hadfield steel, Tribology International, 121, 389 (2018). Doi: https://doi.org/10.1016/j.triboint.2018.01.044
  2. Y. Tian, J. Ju, H. Fu, S. Ma, J. Lin, and Y. Lei, Effect of Chromium content on microstructure, hardness, and wear resistance of as-cast Fe-Cr-B alloy, Journals of Materials Engineering and Performance, 28, 6428 (2019). Doi: https://doi.org/10.1007/s11665-019-04369-5
  3. H. Chen, D. Zhao, Q. Wang, Y. Qiang, and J. Qi, Effects of impact energy on the wear resistance and work hardening mechanism of medium manganese austenitic steel, Friction, 5, 447 (2017). Doi: https://doi.org/10.1007/s40544-017-0158-6
  4. M. Sabzi and M. Farzam, Hadfield manganese austenitic steel: a review of manufacturing processes and properties, Materials Research Express, 6, 1065c2 (2019). Doi: https://doi.org/10.1088/2053-1591/ab3ee3
  5. Z. M. He, Q. C. Jiang, S. B. Fu, and J. P. Xie, Improved work-hardening ability and wear resistance of austenitic manganese steel under non-sever impact-loading conditions, Wear, 120, 305 (1987). Doi: https://doi.org/10.1016/0043-1648(87)90024-X
  6. B. C. D. Cooman, Y. Estrin, and S. K. Kim, Twinning-induced plasticity (TWIP) steels, Acta Materialia, 142, 283 (2018). Doi: https://doi.org/10.1016/j.actamat.2017.06.046
  7. S. G. Bratsch, Standard Electrode Potentials and Temperature Coefficients in Water at 298.15K, Journal of Physical and Chemical Reference Data, 18, 1 (1989). Doi: https://doi.org/10.1063/1.555839
  8. H. R. Bang, J. S. Park, H. G. Seong, and S. J. Kim, Effect of Minor alloying Elements (C, Ni, Cr, Mo) on the LongTerm Corrosion Behaviors of Ultrahigh-Strength Automotive Steel in Neutral Aqueous Environment, Korean Journal of Metals and Materials, 60, 1 (2022). Doi: https://dx.doi.org/10.3365/KJMN.2022.60.1.35
  9. S. O. Kim, J. K. Hwang, and S. J. Kim, Effect of Alloying Elements (Cu, Al, Si) on the Electrochemical Corrosion Behaviors of TWIP Steel in a 3.5 % NaCl Solution, Corrosion Science and Technology, 18, 300 (2019). Doi: https://doi.org/10.14773/cst.2019.18.6.300
  10. M. B. Kannan, R. K. S. Raman, and S. Khoddam, Comparative studies on the corrosion properties of a Fe-Mn-Al-Si steel and an interstitial-free steel, Corrosion science, 50, 2879 (2008). Doi: https://doi.org/10.1016/j.corsci.2008.07.024
  11. S. J. Kim, H. G. Jung, and K. Y. Kim, Effect of tensile stress in elastic and plastic range on hydrogen permeation of high-strength steel in sour environment, Electrochimica Acta, 78, 139 (2012). Doi: https://10.1016/j.electacta.2012.05.147
  12. R. J. K. Wood, J. C. Walker, T. J. Harvey, S. Wang, and S. S. Rajahram, Influence of microstructure on the erosion and erosion-corrosion characteristics of 316 stainless steel, Wear, 306, 254 (2013). Doi: https://doi.org/10.1016/j.wear.2013.08.007
  13. L. Zeng, G. A. Zhang, and X. P. Guo, Erosion-corrosion at different locations of X65 carbon steel elbow, Corrosion Science, 85, 318 (2014). Doi: https://doi.org/10.1016/j.corsci.2014.04.045
  14. S. S. Rajahram, T. J. Harvey, and R. J. K. Wood, Erosion-corrosion resistance of engineering materials in various test conditions, Wear, 267, 244 (2009). Doi: https://doi.org/10.1016/j.wear.2009.01.052
  15. G. T. Burstein and K. Sasaki, Effect of impact angle on the slurry erosion-corrosion of 304L stainless steel, Wear, 240, 80 (2000). Doi: https://doi.org/10.1016/S0043-1648(00)00344-6
  16. C. Wagner and W. Traudm, uber die Deutung von Korrosionsvorgangen durch uberlagerung von elektrochemischen Teilvorgangen und uber die Potentialbildung an Mischelektroden, Zeitschrift fur Elektrochemie und angewandte physikalische Chemie Elektrochemical, 44, 391 (1938). Doi: https://doi.org/10.1002/bbpc.19380440702
  17. M. Stern and L. Geary, Electrochemical Polarization: I . A Theoretical Analysis of the Shape of Polarization Curves, Journal of The Electrochemical Society, 104, 56 (1957). Doi: https://doi.org/10.1149/1.2428496
  18. H. J. Amarendra, G. P. Chaudhari, and S. K. Nath, Synergy of cavitation and slurry erosion in the slurry pot tester, Wear, 290, 25 (2012). Doi: https://doi.org/10.1016/j.wear.2012.05.025
  19. S. S. Rajahram, T. J. Harvery, and R. J. K. Wood, Electrochemical investigation of erosion-corrosion using a slurry pot erosion tester, Tribology International, 44, 232 (2011). Doi: https://doi.org/10.1016/j.triboint.2010.10.008
  20. J. Liu, J. Wang, and W. Hu, Erosion-corrosion behavior of X65 carbon steel in oilfield formation water, International Journal of Electrochemical Science, 14, 262 (2019). Doi: https://doi.org/10.20964/2019.01.51
  21. J. Lis, A. Lis, and C. Kolan, Manganese partitioning in low carbon manganese steel during annealing, Materials Characterization, 59, 1021 (2008). Doi: https://doi.org/10.1016/j.matchar.2007.08.020
  22. I. Karaman, H. Sehitoglu, K. Gall, Y. I. Chumlyakov, and H. J. Maier, Deformation of single crystal Hadfield steel by twinning and slip, Acta Materialia, 48, 1345 (2000). Doi: https://doi.org/10.1016/S1359-6454(99)00383-3
  23. W. Cheng, W. Liu, X. Fan, and S. Yuan, Cooperative enhancements in ductility and strain hardening of a solution-treated Al-Cu-Mn alloy at cryogenic temperatures, Materials Science and Engineering: A, 790, 139707 (2020). Doi: https://doi.org/10.1016/j.msea.2020.139707
  24. M. N. Gussev and K. J. Leonard, In situ SEM-EBSD analysis of plastic deformation mechanisms in neutron-irradiated austenitic steel, Journal of Nuclear Materials, 517, 45 (2019). Doi: https://doi.org/10.1016/j.jnucmat.2019.01.034
  25. L. Clapham, C. Heald, T. Krause, L. Atherton, and P. Clark, Origin of a magnetic easy axis in pipeline steel, Journal of Applied Physics, 86, 1574 (1999). Doi: https://doi.org/10.1063/1.370930
  26. S. J. Kim, Effect of the elastic tensile load on the electrochemical corrosion behavior and diffusible hydrogen content of ferritic steel in acidic environment, International Journal of Hydrogen Energy, 42, 19367 (2017). Doi: https://doi.org/10.1016/j.ijhydene.2017.05.210
  27. Y. J. Jeong, J. S. Park, H. R. Bang, S. G. Lee, J. K. Choi, and S. J. Kim, Effect of Cr Addition to High Mn Steel on Flow-Accelerated Corrosion Behaviors in Neutral Aqueous Environments, Corrosion Science and Technology, 20, 373 (2021). Doi: https://doi.org/10.14773/cst.2021.20.6.373
  28. M. A. A. Bukhaiti, S. M. Ahmed, F. M. F. Badran, and K. M. Emara, Effect of impingement angle on slurry erosion behaviour and mechanisms of 1017 steel and high-chromium white cast iron, Wear, 262, 1187 (2007). Doi: https://doi.org/10.1016/j.wear.2006.11.018
  29. H. X. Guo, B. T. Lu, and J. L. Luo, Interaction of mechanical and electrochemical factors in erosion-corrosion of carbon steel, Electrochimica Acta, 51, 315 (2005). Doi: https://doi.org/10.1016/j.electacta.2005.04.032
  30. B. T. Lu and J. L. Luo, Synergism of Electrochemical and Mechanical Factors in Erosion-Corrosion, Journal of Physical Chemistry, 110, 4217 (2006). Doi: https://doi.org/10.1021/jp051985f
  31. B. T. Lu and J. L. Luo, Correlation between surface-hardness degradation and erosion resistance of carbon steel-Effects of slurry chemistry, Tribology International, 83, 146 (2015). Doi: https://doi.org/10.1016/j.triboint.2014.11.008
  32. M. R. Bateni, J. A. Szpunar, X. Wang, and D. Y. Li, Wear and corrosion wear of medium carbon steel and 304 stainless steel, Wear, 260, 116 (2006). Doi: https://doi.org/10.1016/j.wear.2004.12.037
  33. S. Jahnmir and N. P. Suh, Mechanics of subsurface void nucleation in delamination wear, Wear, 44, 17 (1977). Doi: https://doi.org/10.1016/0043-1648(77)90082-5
  34. P. Murkute, J. Ramkumar, S. Choudhary, and K. Mondal, Effect of alternate corrosion and wear on the overall degradation of a dual phase and a mild steel, Wear, 368-369, 368 (2016). Doi: https://doi.org/10.1016/j.wear.2016.09.027
  35. Y. Li, G. T. Burstein and I. M. Hutchings, The influence of corrosion on the erosion of aluminium by aqueous silica slurries, Wear, 186, 515 (1995). Doi: https://doi.org/10.1016/0043-1648(95)07181-4