• Title/Summary/Keyword: Erector spinae

Search Result 303, Processing Time 0.029 seconds

Postural Strategy by the Difference of Shoe Heel Height During Quiet Standing on an Unstable Surface (불안정 지지면에서 정적 서기 동안 구두 굽 높이의 변화에 따른 자세 조절 전략)

  • Sagong, Woo-Won;An, Duk-Hyun
    • Physical Therapy Korea
    • /
    • v.21 no.2
    • /
    • pp.28-36
    • /
    • 2014
  • The purpose of this study was to evaluate the changes in the electromyographic (EMG) activity of the trunk and the lower limb muscles during quiet standing on an unstable surface while wearing low-heeled shoes (3 cm), high-heeled shoes (7 cm) and without footwear (0 cm) in 20 young healthy women. The subjects stood on an unstable surface for 30 seconds. We examined the differences in the EMG data of the erector spinae, rectus abdominis, biceps femoris, rectus femoris, tibialis anterior, and the gastrocnemius medialis muscle. A one-way repeated analysis of variance was used to compare the effects of shoe heel height on the EMG activity with the level of significance set at ${\alpha}=.05$. The EMG activity of the erector spinae and the rectus femoris were significantly increased (p<.05) in the subjects who wore elevated heel height, while the tibialis anterior and the gastrocnemius medialis were significantly decreased (p<.05). However, the rectus abdominis and the biceps femoris exhibited no significant difference among the three conditions. The above results indicate that wearing high-heeled shoes may change the postural strategy. The findings of this study suggest that excessive heel height could contribute to an increased fall risk during quiet standing.

Effects of the Support Surface Condition on Muscle Activity of Trunk Muscles during Balance Exercises in Patients with Stroke

  • Jung, Kyoung-Sim;Kim, Yong-Su;In, Tae-Sung
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.4
    • /
    • pp.196-200
    • /
    • 2015
  • Purpose: The purpose of this study was to examine the muscle activity of the trunk muscles during balance exercises on a stable and unstable surface in patients with stroke. Methods: Thirteen subjects (8 males, 5 females) with stroke were enrolled in the study. Muscle activity was recorded using surface EMG electrodes from the affected side of the erector spinae, external oblique, and internal oblique muscles. The exercise was performed under three conditions. For the first condition for balance exercise, subjects were instructed to sit on an exercise mat with legs extended. The second condition was to sit with legs extended, with a balance pad under their buttocks. The third condition was to sit with legs extended, have a balance pad under the buttocks and a balance cushion under the lower legs. Results: This study showed significant differences in EMG activities during both arm lifting exercise and weight shifting exercise between conditions. This study showed that the EMG activities of the erector spinae, external oblique, and internal oblique muscles were significantly higher when the trunk exercise was performed using the balance pad with balance ball than when using the stable surface. Conclusion: In conclusion, performing balance exercises using an unstable surface is a useful method for facilitating trunk-muscle strength and hence trunk stability.

Effect of Paretic and Non-paretic Side Spine Taping on Balance Ability in Patients with Stroke

  • Cho, Yonghun;Park, Shinjun;Kim, Soonhee
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.10 no.2
    • /
    • pp.1779-1784
    • /
    • 2019
  • Background: A number of researchers have attempted to improve the balance of stroke patients, however there is still a question as to whether taping is effective in increasing balance. Objective: To determine the effect of paretic and non-paretic side taping on the balance ability in patients with stroke. Design: A single-blind randomized controlled trial Methods: This randomized single-blind controlled clinical trial with a repeated measures study included 45 subjects who were randomly assigned to paretic side taping groups (n=15), non-paretic side taping groups (n=15), and trunk exercise groups (n=15). Trunk exercise and paretic side taping groups had taping on the paralyzed erector spinae, while the non-paretic side taping group had taping on the non-paralyzed erector spinae. Trunk exercises were performed for 30 minutes to promote core muscles. The balance ability measured the center of pressure movement (paretic side, non-paretic side,forward, backward, limit of stability) in the sitting position. All measurements were evaluated using BioRescue. Results: All three groups showed significant increase in all variables after 4 weeks. The paretic and non-paretic side taping groups had a significant increase in all variables after 30 min of attachment. However, there was no significant difference among the three groups. Conclusions: Paralysis and non-paralysis taping improved the balance ability of patients with stroke in an immediate effect of 30 min. However, after 4 weeks of intervention, taping with trunk exercise did not differ from single trunk exercise. In future studies, various analyses need to be conducted through more diverse evaluations.

Effect of Bridge Exercise Combined with Functional Electrical Stimulation on Trunk Muscle Activity and Balance in Stroke Patients

  • Kang, Jeongil;Jeong, Daekeun;Heo, Sinhaeng
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.12 no.2
    • /
    • pp.2323-2330
    • /
    • 2021
  • Background: Stroke patients have weak trunk muscle strength due to brain injury, so a single type of exercise is advised for restoring functionality. However, even after intervention, the problem still lies and it is suggested that another intervention method should be applied with exercise in order to deal with such problem. Objectives: To Investigate the effect of bridge exercise combined with functional electrical stimulation (FES) on trunk muscle activity and balance in stroke patients. Design: Randomized controlled trial. Methods: From July to August 2020, twenty stroke patients was sampled, ten patients who mediated bridge exercises combined with functional electrical stimulation were assigned to experiment group I, and ten patients who mediated general bridge exercises were assigned to experiment groupII. For the pre-test, using surface EMG were measured paralyzed rectus abdominis, erector spinae, transverse abdominis/internal oblique muscle activity, and using trunk impairment scale were measured balance. In order to find out immediate effect after intervention, post-test was measured immediately same way pre-test. Results: Change in balance didn't show significant difference within and between groups, but muscle activity of trunk was significant difference rectus abdominis and erector spinae within groups I (P<.01), also between groups was significant difference (P<.05). Conclusion: Bridge exercise combined with FES could improve trunk function more effectively than general bridge exercise due to physiological effect of functional electrical stimulation.

Effects of Body-Adhesive Backpack Condition on Craniovertebral Angle, Sagittal Shoulder Angle and Muscle Fatigue

  • Son, Jinkyu;Kim, Ho;Shin, Wonseob
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.11 no.4
    • /
    • pp.2203-2211
    • /
    • 2020
  • Background: Backpacks are one of the most widely used accessories in modern society. However, previous studies have shown that carrying a backpack can cause various musculoskeletal problems. Objectives: To investigate the effects of a body-adhesive backpack on craniovertebral angle, sagittal shoulder angle and the muscle fatigue in the upper extremity. Design: Randomized cross-over design. Methods: For this study, 36 healthy university students participated in this study. The experiment was conducted three times using common backpack, and body-adhesive backpack condition. The angles of the cervical spine and shoulder joints of the subjects were calculated without the backpack. Electrodes were placed at upper trapezius, lower trapezius, rectus abdominis and erector spinae to check for muscle fatigue. Subjects carried a backpack and walked on a treadmill for 15 minutes at 4 km/h. The muscle fatigue signal was also measured while walking. After walking, the craniovertebral and sagittal shoulder angles were measured again while subjects carried backpack. Results: As a result of this study, body-adhesive backpack condition showed significant decrease and significant increase in craniovertebral angle and sagittal shoulder angle than common backpack (P<.05). Body-adhesive backpack condition showed significant decrease in upper trapezius, lower trapezius, erector spinae, and rectus abdominis when compared to a common backpack (P<.05). Conclusion: This study suggests that a body-adhesive backpack is more beneficial in correcting body posture than a common backpack.

Effects of Maximum Repeated Squat Exercise on Number of Repetition, Trunk and Lower Extremity EMG Response according to Water Depth

  • Jang, Tae Su;Lee, Dong Sub;Kim, Ki Hong;Kim, Byung Kwan
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.152-160
    • /
    • 2021
  • The purpose of this study was to investigate the difference in the number of repetitions and the change in electromyographic response during the maximum speed squat exercise according to the depth conditions and the maximum speed squat exercise according to the time of each depth. Ten men in their 20s were selected as subjects and the maximum speed squat was performed for one minute in three environmental conditions (ground, knee depth, waist depth). We found that the number of repetitions according to the depth of water showed a significant difference, and as a result of the post-mortem comparison, the number of repetitions was higher in the ground condition and the knee depth than in the waist depth. And the muscle activity of rectus abdominis, erector spinae, rectus femoris, biceps femoris was increased during ground squat exercise, activity of all muscle was decreased during knee depth squat exercise, and activity of rectus abdominis, erector spinae, biceps femoris, tibialis anterior, gastrocnemius was decreased during waist depth squat. In conclusion, muscle activity of lower extremities during squat exercise in underwater environment can be lowered as the depth of water is deep due to buoyancy, but muscle activity of trunk muscles can be increased rather due to the effect of viscosity and drag.

The Effectiveness Verification of Whole-body Vibration through Comparative analysis of Muscle activity for Whole-body Vibration Exercise, Walking and Running (전신진동운동, 보행 및 런닝과의 근육활성량 및 근 발현 특성 비교 분석을 통한 전신진동운동 효과검증)

  • Moon, Young Jin;Cho, Won Jun
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.1
    • /
    • pp.59-63
    • /
    • 2021
  • Objective: Through comparative analysis of muscle activity for whole-body vibration, walking and running movements, it is to verify the training effect of whole-body vibration exercise in terms of amount of exercise and muscle activity characteristics. Method: Flat ground walking and slope walking (10 degrees) at a speed of 5 km/h, flat ground running and slope running (10 degrees) at a speed of 11 km/h for running were performed on treadmill, and squats were maintained at 12 Hz, 20 Hz, and 29 Hz conditions on Whole body vibration exercise equipment (Galileo). Muscle activity was analyzed through EMG analysis device for one minute for each condition. Results: The Anterior Tibialis and Erector Spinae show greater exercise effect in whole-body vibration than walking and running. The Rectus Femoris, Biceps Femoris, and Gluteus Maximus have the best effect of exercise in flat running. Whole-body vibration exercise showed greater muscle activation effect as the frequency increased, and exercise effect similar to walking during the same exercise time. Conclusion: The amount of exercise through Whole-body vibration exercise was similar to that of walking exercise, and the Anterior Tibialis and Erector Spinae shows better exercise effect than walking and running.

Effect of the Abdominal Bracing Maneuver on Muscle Activity of the Trunk and Legs during Walking in Healthy Adults

  • Park, Daechan;Lee, Miyoung;Chung, Yijung
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.2
    • /
    • pp.119-126
    • /
    • 2022
  • Objective: This study aimed to investigate the effect of the application of abdominal brace techniques on muscle activity of the trunk and lower extremities when walking. Design: Cross-sectional study Methods: This study was conducted on 26 healthy adults in their 20s, and the subjects performed two conditions in random order: walking with the abdominal bracing technique and walking in an abdominal relaxation state (normal gait). Muscle activity was measured on the dominant side of all subjects using surface electromyography, and the attachment sites were the erector spinae, external oblique, internal oblique, vastus lateralis, and vastus medialis oblique muscles. Each condition was measured three times to calculate and analyze the average value. Results: When walking using the abdominal brace technique, the muscle activity of the erector spinae, external oblique, internal oblique, and vastus lateralis increased significantly (p<0.05), and the muscle activity of the vastus medialis increased as well but was not significant. Conclusions: The results of this study indicate that it is possible to be used as an effective guide to increasing the muscle activity and stability of the trunk and lower extremities through the application of the abdominal bracing technique during walking.

The Effects of Bridge Exercise with One Hip Joint Adduction on Trunk Muscle Thickness

  • Park, Jae-Cheol;Lee, Dong-Kyu
    • The Journal of Korean Physical Therapy
    • /
    • v.32 no.6
    • /
    • pp.354-358
    • /
    • 2020
  • Purpose: This study aimed to verify the effects of bridge exercise with resistance to one hip joint adductor muscle on the thickness of external and internal oblique abdominal muscles, transversus abdominis muscle, and erector spinae muscle. Methods: The subjects were divided into two exercise groups: 15 for Bridge Exercise Group (BEG) and 15 for One Hip joint Adduction Bridge Exercise Group (OHABEG). The study used an ultrasonic instrument to measure trunk muscle thickness. OHABEG performed a bridge exercise with one hip Joint adduction. BEG performed a bridge exercise without resistance. Results: The external oblique abdominal, internal oblique abdominal, and the transversus abdominis muscles showed a significant increase by period and time in intra-group interactions (p<0.05), while there was no significant difference in inter-group changes (p>0.05). The erector spinae muscle had a significant increase in each period (p<0.05) but no significant difference in time, intra-group interactions, and in inter-group changes (p>0.05). Conclusion: These results demonstrated that bridge exercise with one hip joint adduction had positive effects on trunk muscle thickness. These results confirm that a bridge exercise with one hip joint adduction has a positive effect on the muscle thickness of trunk, suggesting the possibility of using it as a rehabilitation treatment for a lumbar stabilization exercise and as a basic data.

Effects of Massage Robot on Skin Temperature, Pain, Muscle Tone, and ROM in Patients with Non-specific Pain (비특이적 통증 환자에서 마사지 로봇이 체표면 온도, 통증, 근긴장도, 관절가동범위에 미치는 효과)

  • So Jeong Bae;Ki Hyun Kwon;Ki Sik Tae;Hyun Ju Lee
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.476-481
    • /
    • 2023
  • The purpose of this study was to investigate the effects on skin temperature, pain, muscle tone, and ROM after applying the massage robot "PIRO-ZERO" to 6 men and 4 women in their 20s who complained of non-specific pain in the shoulder or back for more than 12 weeks. As a result of the study, there was a significant increase in skin temperature not only in the area where the massage was applied, but also on the opposite side and throughout the body due to increased blood flow. Pain in the upper trapezius, rhomboid, and erector spinae muscle was decreased, and muscle tone in the erector spinae muscles was significantly decreased. There was a significant increase in ROM of neck and trunk flexion, which is thought to be because the massage reduced muscle tone around the spine, increasing flexibility. In the future, as the safety and effectiveness of massage robots are further verified and the pressure, speed, and path become more diverse, satisfaction is expected to increase.