• 제목/요약/키워드: Erbium:YAG

검색결과 17건 처리시간 0.023초

A Pilot Study of Skin Resurfacing Using the 2,790-nm Erbium:YSGG Laser System

  • Rhie, Jong Won;Shim, Jeong Su;Choi, Won Seok
    • Archives of Plastic Surgery
    • /
    • 제42권1호
    • /
    • pp.52-58
    • /
    • 2015
  • Background The erbium:yttrium scandium gallium garnet (Er:YSGG) laser differs from other laser techniques by having a faster and higher cure rate. Since the Er:YSGG laser causes an appropriate proportion of ablation and coagulation, it has advantages over the conventional carbon dioxide ($CO_2$) laser and the erbium-doped yttrium aluminum garnet (Er:YAG) laser, including heating tendencies and explosive vaporization. This research was conducted to explore the effects and safety of the Er:YSGG laser. Methods Twenty patients participated in the pilot study of a resurfacing system using a 2,790-nm Er:YSGG laser. All patients received facial treatment by the 2,790-nm Er:YSGG laser system (Cutera) twice with a 4-week interval. Wrinkle reduction, reduction in pigment inhomogeneity, and improvement in tone and texture were measured. Results Study subjects included 15 women and five men. Re-epithelization occurred in all subjects 3 to 4 days after treatment, and wrinkle reduction, reduction in pigment inhomogeneity, and improvement in tone and texture within 6 months of treatment. Conclusions The 2,790-nm YSGG laser technique had fewer complications and was effective in the improvement of scars, pores, wrinkles, and skin tone and color with one or two treatments. We expect this method to be effective for people with acne scars, pore scars, deep wrinkles, and uneven skin texture and color.

광신호 증폭기 EDFA LD 펌프 패키징 레이저 용접부 변형 해석 (Analysis of Laser Weldment Distortion in the EDFA LD Pump Packaging)

  • 강대현;손광재;양영수
    • 한국정밀공학회지
    • /
    • 제18권1호
    • /
    • pp.139-146
    • /
    • 2001
  • This paper presents a study on heat transfer and residual distortion analysis of laser welded EDFA(Erbium Doped Fiber Amplifier) LD(Laser Diode) Pump using the finite element method. In the production process of LD Pump in light-wave communication system, ferrule and saddle are welded by Nd-YAG laser. These parts experience thermal and mechanical effect during heating and cooling cycle with the laser welding. Thus distortion happens in the laser-welded packaging, and it makes an error in detecting the light signal translate through optical fiber in LD Pump. The amount of final displacement produced by the laser welding is predicted using the finite element method. And the optimal shape of saddle is proposed with the results of numerical analyses to minimize the displacement.

  • PDF

The Effects of a Er:YAG Laser on Machined, Sand-Blasted and Acid-Etched, and Resorbable Blast Media Titanium Surfaces Using Confocal Microscopy and Scanning Electron Microscopy

  • Park, Jun-Beom;Kim, Do-Young;Ko, Youngkyung
    • Journal of Korean Dental Science
    • /
    • 제9권1호
    • /
    • pp.19-27
    • /
    • 2016
  • Purpose: Laser treatment has become a popular method in implant dentistry, and lasers have been used for the decontamination of implant surfaces when treating peri-implantitis. This study was performed to evaluate the effects of an Erbium-doped:Yttrium-Aluminum-Garnet (Er:YAG) laser with different settings on machined (MA), sand-blasted and acid-etched (SA), and resorbable blast media (RBM) titanium surfaces using scanning electron microscopy and confocal microscopy. Materials and Methods: Four MA, four SA, and four RBM discs were either irradiated at 40 mJ/20 Hz, 90 mJ/20 Hz, or 40 mJ/25 Hz for 2 minutes. The specimens were evaluated with scanning electron microscopy and confocal microscopy. Result: The untreated MA surface demonstrated uniform roughness with circumferential machining marks, and depressions were observed after laser treatment. The untreated SA surface demonstrated a rough surface with sharp spikes and deep pits, and the laser produced noticeable changes on the SA titanium surfaces with melting and fusion. The untreated RBM surface demonstrated a rough surface with irregular indentation, and treatment with the laser produced changes on the RBM titanium surfaces. The Er:YAG laser produced significant changes on the roughness parameters, including arithmetic mean height of the surface (Sa) and maximum height of the surface (Sz), of the MA and SA surfaces. However, the Er:YAG laser did not produce notable changes on the roughness parameters, such as Sa and Sz, of the RBM surfaces. Conclusion: This study evaluated the effects of an Er:YAG laser on MA, SA, and RBM titanium discs using confocal microscopy and scanning electron microscopy. Treatment with the laser produced significant changes in the roughness of MA and SA surfaces, but the roughness parameters of the RBM discs were not significantly changed. Further research is needed to evaluate the efficiency of the Er:YAG laser in removing the contaminants, adhering bacteria, and the effects of treatment on cellular attachment, proliferation, and differentiation.

The effect of Er:YAG laser irradiation on the surface microstructure and roughness of hydroxyapatite-coated implant

  • Kim, Seong-Won;Kwon, Young-Hyuk;Chung, Jong-Hyuk;Shin, Seung-Il;Herr, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • 제40권6호
    • /
    • pp.276-282
    • /
    • 2010
  • Purpose: The present study was performed to evaluate the effect of erbium:yttrium-aluminium-garnet (Er:YAG) laser irradiation on the change of hydroxyapatite (HA)-coated implant surface microstructure according to the laser energy and the application time. Methods: The implant surface was irradiated by Er:YAG laser under combination condition using the laser energy of 100 mJ/pulse, 140 mJ/pulse and 180 mJ/pulse and application time of 1 minute, 1.5 minutes and 2 minutes. The specimens were examined by surface roughness evaluation and scanning electron microscopic observation. Results: In scanning electron microscope, HA-coated implant surface was not altered by Er:YAG laser irradiation under experimental condition on 100 mJ/pulse, 1 minute. Local areas with surface melting and cracks were founded on 100 mJ/pulse, 1.5 minutes and 2 minutes. One hundred forty mJ/pulse and 180 mJ/pulse group had surface melting and peeling area of HA particles, which condition was more severe depending on the increase of application time. Under all experimental condition, the difference of surface roughness value on implant surface was not statistically significant. Conclusions: Er:YAG laser on HA-coated implant surface is recommended to be irradiated below 100 mJ/pulse, 1 minute for detoxification of implant surface without surface alteration.

Er: YAG 레이저 조사 임프란트 표면에 대한 전자주사현미경관찰 (ER: YAG LASER IRRADIATED IMPLANT SURFACE OBSERVATION WITH SCANNING ELECTRON MICROSCOPY)

  • 최정구;최수진;민승기;오승환;권경환;최문기;이준;오세리
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제30권6호
    • /
    • pp.540-545
    • /
    • 2008
  • Since mid 20th century, dental treatments with laser have been introduced and improved a lot. Because early $CO_2$, Nd:YAG, diode, argon, and holmium lasers are used for dealing soft tissue, so it applied just limited field. But, in 1997 the lasers of erbium family that able to dealing soft and hard tissue also were introduced, laser application fields are enlarged. In today, the application fields reach on implantation treatment, so clinicians can use the laser to make holes for implantation, and flap elevation, even though treating peri-implantitis. So our class want to discover the optimal setting of Er:YAG laser when treating peri-implantitis. We observed the surface that initially treated by RBM and TPS passion and laser with varied options of exposure time and power with SEM image. For this we conclude the optimal setting range that does not alter the implant surface structure and report it.

Er:YAG 레이저와 Er,Cr: YSGG 레이저가 염증유발 마우스조직에 미치는 영향 (The Effect of ER:YAG Laser & ER,CR:YSGG Laser on the Tissue of the Inflammation-Induced Mouse)

  • 박태일;이형석;이희종;채창훈;이영주;변광섭;홍순민;최미라;박준우
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제32권5호
    • /
    • pp.396-405
    • /
    • 2010
  • Purpose: This study was performed to find out the effects of the Er:YAG laser (Key Laser) & Er,Cr:YSGG laser (Water Laser) on inflammatory tissues. Materials and Methods: It was performed on about 20 g, 6 weeks male ICR mouses. They were grouped into the control (negative), the inflammation induced 'control'(positive), Er,Cr:YSGG laser exposured group after inducing inflammation, Er:YAG lasere exposured group after inducing inflammation each 15 mouses. The mouses were applicated 0.5% DNFB 1 cc on ear skin twice a day for 4 days until symptom expression. After laser exposure, ear tissues were extracted and defined gene expression by RT-PCR. Then, tissue staining, lymphocytes observation, electromicroscophic laboratory were carried out. Results: Interleukin-$1{\beta}$ was expressed much less in the A-laser exposed group. Interleukin-$1{\beta}$ & Tumor Necrosis Factor-${\alpha}$ were expressed 7 times lesser in the A-laser exposed group. The number of Lymphocytes related to inflammation was decreased rapidly in the A-laser exposed group in vivo. he number of cavity recovered normal was a little bigger in the A-laser exposed group after 5 days Conclusion: The expression of IL-$1{\beta}$ & TNF-${\alpha}$, hitologic change, observation with electron microscope shows that Erbium laser exposure causes lesser inflammation with A-laser rather than B-laser.

Laser Resurfacing after Facial Free Flap Reconstruction

  • Kim, Beom-Jun;Lee, Yun-Whan;You, Hi-Jin;Hwang, Na-Hyun;Kim, Deok-Woo
    • Medical Lasers
    • /
    • 제8권1호
    • /
    • pp.7-12
    • /
    • 2019
  • Background and Objectives Skin and soft tissue defects can be treated according to a range of strategies, such as local flap, skin graft, biological dressing, or free flap. On the other hand, free tissue transfer usually leaves a distinct scar with an inconsistency of color or hypertrophy. This problem is highlighted if the defect is located on the face, which could have devastating effects on a patient's psychosocial health. Materials and Methods The authors used an erbium : yttrium-aluminum-garnet (Er:YAG) laser to resurface the free flap skin and match the color with the surrounding facial skin. This study evaluated the effectiveness of laser skin resurfacing on the harmonious color matching of transferred flap. Patients who had undergone laser resurfacing on facial flap skin between January 2014 and December 2018 were reviewed retrospectively. An ablative 2,940-nm fractional Er:YAG laser treatment was delivered to the entire flap skin at 21 J/cm2 with the treatment end-point of pinpoint bleeding. Several months later, the clinical photographs were analyzed. The L*a*b* color co-ordinates of both the flap and surrounding normal skin were measured using Adobe Photoshop. The L*a*b* color difference (ΔE) for the scar and normal surrounding skin were calculated using the following equation: ${\Delta}E=\sqrt{({\Delta}L)^2+({\Delta}a)^2+({\Delta}b)^2}$ Results All five patients were satisfied with the more natural appearance of the flaps. The ΔE values decreased significantly from the pre-treatment mean value of 19.64 to the post-treatment mean value of 11.39 (Wilcoxon signed-rank test, p = 0.043). Conclusion Ablative laser resurfacing can improve the aesthetic outcome of free tissue transfer on the face.