• Title/Summary/Keyword: Equivalent scattering center

Search Result 19, Processing Time 0.021 seconds

Development of Estimation Program for Hit Distribution by Radar-Homing Anti-Ship Missile Considering Electromagnetic Wave Scatter Distribution of Naval Ship (함정의 전자기파 산란자 분포를 고려한 레이더 호밍 대함미사일 피격 위치 추정 프로그램 개발)

  • Sung-Ju Park;Seok-Tae Yoon;Eui-Young Kim;Chae-Lim Jeong;Kookhyun Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.5
    • /
    • pp.352-358
    • /
    • 2024
  • The susceptibility of warships denotes the hit probability by anti-ship missiles in a hostile environment. The distribution characteristics of the hit location directly influence the vulnerability. This paper proposes a simulation method to determine the hit location of radar-homing anti-ship missiles by their approach direction. The method uses high-frequency analysis theory to calculate electromagnetic scatterers and determines the equivalent scattering center position corresponding to the hit location. The proposed method was implemented to an in-house software called SCTracer/RCS, which follows the process: importing numerical analysis model, defining calculation condition, calculating electromagnetic wave scattering centers, storing to database, calling scattering center data, estimating equivalent scattering center, and analyzing hit-point distribution. To validate the feasibility and practical applicability of this software, the hit-point distribution is examined for a 90-meter-class virtual warship.

Calculation of Phase Center of Large Geomorphological Object on the Surface

  • Kim Jun-su;Park Sang-Eun;Kim Duk-jin;Moon Wooil M.
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.741-744
    • /
    • 2005
  • A numerical scattering model for artificial metal structure based on physical optics approximation is developed to identify the height of phase center, and the result is compared with interferometric SAR DEM. The interferometric SAR data were gathered by AIRSAR during PACRIM- II campaign on Jeju Island. Power transmission towers on piedmont pasture along the slopes of Mt. Halla look like elliptic risings in TOPSAR DEM. The heights of risings are quantitatively analyzed using a scattering model in the way of achieving the height of phase centers of power transmission towers. A numerical algorithm is developed on the basis of physical optics approximation. The structure of power transmission tower was decomposed into hundreds of rectangular metal plates, of which the scattering matrix is known in analytic form, and the calculated scattering fields were summed coherently. The effect of direct backscattering component, ground-scatterer component and scatterer-ground component are decomposed and computed individually for each rectangular metal plate. The $\Deltak-radar$ equivalent was used to calculate height of phase center of the scatterer. The heights of a selected power transmission tower and scattering algorithm results give existence and location of the transmission towers but not actual tower heights.

  • PDF

Design of Waveguide Bandpass Filters Using H-plane Step Discontinuities (도파관 H 면 계단형 불연속 구조를 이용한 대이동과 여파기의 설계)

  • Nam, S.H.;Kim, K.Y.;Yun, S.W.;Ann, C.
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.1
    • /
    • pp.33-38
    • /
    • 1994
  • In this paper, waveguide banpass filters using H-plane step discontinuities are designed based on the field theory analysis and optimization of the resonator lengths as well as dimensions of discontinuities, instead of the conventional synthesis method based on the equivalent circuit. The waveguide inductive obstacles introduced by H-plane step discontinuities analyzed using mode-matching method and the generalized scattering parameters are derived. Using the derived scattering parameters of the discontinuities as well as those of resonators, waveguide bandpass filters are designed through optimization method, modified Razor search method proposed by J.H.Bandler. Using this design procedures, waveguide bandpass filters are designed and tested at X-band(center frequency 10GHz) as well as Ka-band(center frequency 35GHz).

  • PDF

Equivalent Network Modeling of Slot-Coupled Microstripline to Waveguide Transition (슬롯 결합 마이크로스트립라인-도파관 천이기의 등가 회로 모델링)

  • Kim Won-Ho;Shin Jong-Woo;Kim Jeong-Phill
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.10 s.89
    • /
    • pp.1005-1010
    • /
    • 2004
  • An analysis method of slot-coupled microstripline to waveguide transition is presented to developed a simple but accurate equivalent circuit model. The equivalent circuit consists of an ideal transformer, microstrip open stub, and admittance elements looking into a waveguide and a half space of feed side from a slot center. The related circuit element values are calculated by applying the reciprocity theorem, the Fourier transform and series representation, the complex power concept, and the spectral-domain immittance approach. The computed scattering parameters are compared with the measured, and good agreement validates the simplicity and accuracy of the proposed equivalent circuit model.

TD-CFIE Formulation for Transient Electromagnetic Scattering from 3-D Dielectric Objects

  • Lee, Young-Hwan;Jung, Baek-Ho;Sarkar, Tapan K.;Yuan, Mengtao;Ji, Zhong;Park, Seong-Ook
    • ETRI Journal
    • /
    • v.29 no.1
    • /
    • pp.8-17
    • /
    • 2007
  • In this paper, we present a time domain combined field integral equation formulation (TD-CFIE) to analyze the transient electromagnetic response from dielectric objects. The solution method is based on the method of moments which involves separate spatial and temporal testing procedures. A set of the RWG functions is used for spatial expansion of the equivalent electric and magnetic current densities, and a combination of RWG and its orthogonal component is used for spatial testing. The time domain unknowns are approximated by a set of orthonormal basis functions derived from the Laguerre polynomials. These basis functions are also used for temporal testing. Use of this temporal expansion function characterizing the time variable makes it possible to handle the time derivative terms in the integral equation and decouples the space-time continuum in an analytic fashion. Numerical results computed by the proposed formulation are compared with the solutions of the frequency domain combined field integral equation.

  • PDF

Physicochemical Properties of Corn Starch-derived Branched Dextrin Produced by a Branching Enzyme

  • Song, Eun-Bum;Min, Byoung-Cheol;Hwang, Eun-Sun;Lee, Hyong-Joo
    • Food Science and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.234-240
    • /
    • 2008
  • The optimal conditions for the production of branched dextrin from com starch (CSBD) using branching enzyme (BE) were established by investigating the degree of retrogradation of the gelatinized starch. The physicochemical properties of CSBD prepared using the established process were evaluated. It was found that physicochemical properties of com starch were greatly modified by BE treatment. CSBD had a higher dextrose-equivalent value and water solubility than the corresponding control. On the other hand, the viscosities in gelatinized solution and amylose contents of CSBD were lower than those of the control. A high-performance size-exclusion chromatography/multiangle laser light scattering/retractive index (HPSEC/MALLS/RI) system showed that the average molecular weight of CSBD was lower than that of the control. The pasting viscosities of CSBD were stable during the entire temperature cycle. In general, the BE treatment resulted in the retrogradation during storage being lower for CSBD than for the control.

Extraction of Passive Device Model Parameters Using Genetic Algorithms

  • Yun, Il-Gu;Carastro, Lawrence A.;Poddar, Ravi;Brooke, Martin A.;May, Gary S.;Hyun, Kyung-Sook;Pyun, Kwang-Eui
    • ETRI Journal
    • /
    • v.22 no.1
    • /
    • pp.38-46
    • /
    • 2000
  • The extraction of model parameters for embedded passive components is crucial for designing and characterizing the performance of multichip module (MCM) substrates. In this paper, a method for optimizing the extraction of these parameters using genetic algorithms is presented. The results of this method are compared with optimization using the Levenberg-Marquardt (LM) algorithm used in the HSPICE circuit modeling tool. A set of integrated resistor structures are fabricated, and their scattering parameters are measured for a range of frequencies from 45 MHz to 5 GHz. Optimal equivalent circuit models for these structures are derived from the s-parameter measurements using each algorithm. Predicted s-parameters for the optimized equivalent circuit are then obtained from HSPICE. The difference between the measured and predicted s-parameters in the frequency range of interest is used as a measure of the accuracy of the two optimization algorithms. It is determined that the LM method is extremely dependent upon the initial starting point of the parameter search and is thus prone to become trapped in local minima. This drawback is alleviated and the accuracy of the parameter values obtained is improved using genetic algorithms.

  • PDF

Therapeutic Proton Beam Range Measurement with EBT3 Film and Comparison with Tool for Particle Simulation

  • Lee, Nuri;Kim, Chankyu;Song, Mi Hee;Lee, Se Byeong
    • Progress in Medical Physics
    • /
    • v.30 no.4
    • /
    • pp.112-119
    • /
    • 2019
  • Purpose: The advantages of ocular proton therapy are that it spares the optic nerve and delivers the minimal dose to normal surrounding tissues. In this study, it developed a solid eye phantom that enabled us to perform quality assurance (QA) to verify the dose and beam range for passive single scattering proton therapy using a single phantom. For this purpose, a new solid eye phantom with a polymethyl-methacrylate (PMMA) wedge was developed using film dosimetry and an ionization chamber. Methods: The typical beam shape used for eye treatment is approximately 3 cm in diameter and the beam range is below 5 cm. Since proton therapy has a problem with beam range uncertainty due to differences in the stopping power of normal tissue, bone, air, etc, the beam range should be confirmed before treatment. A film can be placed on the slope of the phantom to evaluate the Spread-out Bragg Peak based on the water equivalent thickness value of PMMA on the film. In addition, an ionization chamber (Pin-point, PTW 31014) can be inserted into a hole in the phantom to measure the absolute dose. Results: The eye phantom was used for independent patient-specific QA. The differences in the output and beam range between the measurement and the planned treatment were less than 1.5% and 0.1 cm, respectively. Conclusions: An eye phantom was developed and the performance was successfully validated. The phantom can be employed to verify the output and beam range for ocular proton therapy.

A Parasitic Elements Extraction of the Distributed Elements and an Application of the BPF Using the Short-Open Calibration Method (단락 개방 Calibration 방법을 이용한 분포 정수 소자의 기생 소자 추출 및 대역 통과 필터에의 응용)

  • Kim, Yu-Seon;Nam, Hun;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.115-123
    • /
    • 2009
  • In this paper, we extract the parasitic elements of the transmission line with the defected ground structure(DGS) and the short-circuited comb line section using the Short-Open Calibration(SOC). The scattering matrixes of short, open and the distributed elements in microstrip line are measured by full electro-magnetic(EM) simulator and Vector Network Analyser(VNA). The electro-magnetic effects of the proposed structures are considered by the II and T equivalent circuits with frequency independent elements, and the relations between the measured scattering parameters and the elements in the circuits are shown by performing 2 port network analysis. Moreover, to design the 2.4 GHz bandpass filter with second order butterworth prototype, the proposed methods are applied. As results, the measured $S_{11}$ and $S_{21}$ indicate -20 dB and -1.3 dB at center frequency, and these are shown within 5 % error compare to the predicted results at $0.5{\sim}5\;GHz$.

Analysis of Scattering Rays and Shielding Efficiency through Lead Shielding for 0.511 MeV Gamma Rays Based on Skin Dose (피부선량을 기준으로 0.511 MeV 감마선에 대한 납 차폐체의 산란선 및 차폐 효율 분석)

  • Jang, Dong-Gun;Park, Eun-Tae
    • Journal of radiological science and technology
    • /
    • v.43 no.4
    • /
    • pp.259-264
    • /
    • 2020
  • Radiation causes radiation hazards in the human body. In Korea, a case of radiation necrosis occurred in 2014. In this study, the scatter and shielding efficiency according to lead shielding were classified into epidermis and dermis for 0.511 MeV used in nuclear medicine. In this study, experiments were conducted using the slab phantom that represents calibration and the dose of human trunk. Experimental results showed that the shielding rate of 0.25 mmPb was 180% in the epidermis and 96% in the dermis. Shielding at 0.5mmPb showed shielding rates of 158%in the epidermis and 82% in the dermis. As a result of measuring the absorbed dose by subdividing the thickness of the dermis into 0.5 mm intervals, when the shielding was carried out at 0.25 mmPb, the dose appeared to be about 120% at 0.5 mm of the dermis surface, and the dose was decreased at the subsequent depth. Shielding at 0.5 mmPb, the dose appeared to be about 101% at the surface 0.5 mm, and the dose was measured to decrease at the subsequent depth. This result suggests that when lead aprons are actually used, the scattering rays would be sufficiently removed due to the spaces generated by the clothes and air, Therefore, the scattered ray generated from lead will not reach the human body. The ICRU defines the epidermis (0.07), in which the radiation-induced damage of the skin occurs, as the dose equivalent. If the radiation dose of the dermis is considered in addition, it will be helpful for the evaluation of the prognosis for radiation hazard of the skin.