• 제목/요약/키워드: Equivalent Rigidity

검색결과 53건 처리시간 0.02초

Dynamic analysis of a transversely isotropic non-classical thin plate

  • Fadodun, Odunayo O.;Borokinni, Adebowale S.;Layeni, Olawanle P.;Akinola, Adegbola P.
    • Wind and Structures
    • /
    • 제25권1호
    • /
    • pp.25-38
    • /
    • 2017
  • This study investigates the dynamic analysis of a transversely isotropic thin plate. The plate is made of hyperelastic John's material and its constitutive law is obtained by taken the Frechect derivative of the highlighted energy function with respect to the geometry of deformation. The three-dimensional equation governing the motion of the plate is expressed in terms of first Piola-Kirchhoff's stress tensor. In the reduction to an equivalent two-dimensional plate equation, the obtained model generalizes the classical plate equation of motion. It is obtained that the plate under consideration exhibits harmonic force within its planes whereas this force varnishes in the classical plate model. The presence of harmonic forces within the planes of the considered plate increases the natural and resonance frequencies of the plate in free and forced vibrations respectively. Further, the parameter characterizing the transversely isotropic structure of the plate is observed to increase the plate flexural rigidity which in turn increases both the natural and resonance frequencies. Finally, this study reinforces the view that non-classical models of problems in elasticity provide ample opportunity to reveal important phenomena which classical models often fail to apprehend.

자중과 용접변형을 고려한 평블록 조립 시뮬레이션 (An Assembly Simulation of a Plane Block with Gravity and Welding Deformations)

  • 노재규;신종계
    • 대한조선학회논문집
    • /
    • 제36권3호
    • /
    • pp.122-133
    • /
    • 1999
  • 완성되어진 블록을 이용한 탑재의 과정에서 발생하는 블록 경계간의 판재 겹쳐짐 현상, 과도한 간격 및 단차의 발생현상은 선박의 건조비용과 공수를 증가시키는 요인이 된다. 본 논문에서는 블록의 조립 및 탑재에 관한 시뮬레이션 시스템을 제안하고 이중 조립에 관한 시뮬레이션을 용접순서에 따라 용접변형 및 자중을 고려하여 유한요소해석을 ANSYS를 이용하여 수행하였다. 용접에 의한 변형은 실험에 의한 변형량을 이용한 등가강성에 따른 등가 하중을 사용하여 탄성적인 해석법을 수행하여 예측하였으며 선체 이중저 평블록을 패널 조립법에 근거한 조립순서에 따라 시뮬레이션을 수행하였다. 시뮬레이션을 통한 변형으로부터 조립순서에 따른 중간 제품의 형상의 변화에 의한 강성의 변화에 기인한 변형량의 차이를 확인 할 수 있었으며, 자중의 효과를 반드시 고려하여야 함을 확인 할 수 있었다.

  • PDF

엔드밀 가공시 공구변형을 고려한 표면형성 해석 (Surface Generation in End Milling considering Tool Deflection)

  • 이상규
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.119-124
    • /
    • 1996
  • End milling operation is very important in machining precision components. Deterioration of surface roughness and surface geometry will cause more process for surface finishing. According to the feed rate and the cutting edge geometry, the cusp which is geometrically uncut surface is determined. To reduce the cost for dinishing operation after end milling, the cusp must be remaianed in small size as possible. Due to the cylindrical type of the end mill, tool deflection is one of the main problems in surface generation. The cutting resistance and the rigidity of the end mill will determine the size of tool deflection. One more important factor which deteriorate surface quality comes from the error in manufacturing end mills. Run-out of end mill which is the difference of the radius of each cutting edges will produce the difference of the cusp size in every rotation of end mill. These three major factors to the surface quality will be analized and the result will be compared with experimental ressult.

  • PDF

TRIZ 기법을 통한 휴대가 용이한 Drone 설계 (Portable-size Drone Design Using TRIZ Method)

  • 김종형;김형직;정재남;장동휘;권혁동
    • 한국생산제조학회지
    • /
    • 제26권2호
    • /
    • pp.230-237
    • /
    • 2017
  • Various drones have extended application area very fast. In this paper, we define two contradictions in designing a portable-size drone by using TRIZ technique. The first is a physical contradiction between high rigidity and good portability, and the second is a technical contradiction between high stability and good portability. Through TRIZ technique, six design principles, which guide direction for optimal design, were driven. Consequently, an umbrella mechanism and design criteria were proposed for a portable-size drone. Detail design is verified through finite element method. Test results for the portable-size prototype drone show good performance, and prove its usefulness to be equivalent to a general full-size drone.

상지 재활을 위한 3-D 로봇 시스템의 혼합 위치/힘 제어 (Hybrid Position/Force Control of a 3-D Rehabilitation Robot System for Upper Extremities)

  • 이수한;신규현
    • 한국정밀공학회지
    • /
    • 제28권5호
    • /
    • pp.599-605
    • /
    • 2011
  • A 3-D rehabilitation robot system is developed. The robot system is for the rehabilitation of upper extremities, especially the shoulder and elbow joints, and has 3-D workspace for occupational therapy to recover physical functions in activities of daily living(ADL). The rehabilitation robot system has 1 DOF in horizontal rotational motion and 2 DOF in vertical rotational motion, where all actuators are set on the ground. Parallelogram linkage mechanisms lower the equivalent inertia of the control elements as well as control forces. Also the mechanisms have high mechanical rigidity for the end effector and the handle. In this paper, a hybrid position/force controller is used for controlling positions and forces simultaneously The controller is tuned according to the robot posture. The active motion modes for rehabilitation program consist of active-resisted motion mode and active-free motion mode. The results of the experiments show that the proposed motion modes provide the intended forces effectively.

탄소섬유보강 플라스틱시트로 외부보강된 RC 슬래브의 p-Version 비선형 유한요소 해석 (p-Version Nonlinear Finite Element Analysis of RC Slabs Strengthened with Externally Bonded CFRP Sheets)

  • 조진구;박진환
    • 한국농공학회논문집
    • /
    • 제48권1호
    • /
    • pp.61-68
    • /
    • 2006
  • The p-version nonlinear finite element model has been developed to analyze the nonlinear behavior of simply supported RC slabs strengthened with carbon fiber reinforced plastic sheets. The shape function is adopted with integral of Legendre polynomials. The compression model of concrete is based on the Kupfer's yield criterion, hardening rule, and crushing condition. The cracking behavior is modeled by a smeared crack model. In this study, the fixed crack approach is adopted as being geometrically fixed in direction once generated. Each steel layer has a uniaxial behavior resisting only the axial force in the bar direction. Identical behavior is assumed fur tension and compression of steel according to the elastic modulus. The carbon fiber reinforced plastic sheets are considered as reinforced layers of equivalent thickness with uniaxial strength and rigidity properties in the present model. It is shown that the proposed model is able to adequately predicte the displacement and ultimate load of nonlinear simply supported RC slabs by a patch with respect to reinforcement ratio, thickness and angles of CFRP sheets.

Pseudo-dynamic test of the steel frame - Shear wall with prefabricated floor structure

  • Han, Chun;Li, Qingning;Jiang, Weishan;Yin, Junhong;Yan, Lei
    • Steel and Composite Structures
    • /
    • 제20권2호
    • /
    • pp.431-445
    • /
    • 2016
  • Seismic behavior of new composite structural system with a fabricated floor was studied. A two-bay and three-story structural model with the scale ratio of 1/4 was consequently designed. Based on the proposed model, multiple factors including energy dissipation capacity, stiffness degradation and deformation performance were analyzed through equivalent single degree of freedom pseudo-dynamic test with different earthquake levels. The results show that, structural integrity as well as the effective transmission of the horizontal force can be ensured by additional X bracing at the bottom of the rigidity of the floor without concrete topping. It is proved that the cast-in-place floor in areas with high seismic intensity can be replaced by the prefabricated floor without pouring surface layer. The results provide a reliable theoretical basis for the seismic design of the similar structural systems in engineering application.

Dynamic behaviors of viscous damper on concrete archaized building with lintel-column joint

  • Xue, Jianyang;Dong, Jinshuang;Sui, Yan
    • Earthquakes and Structures
    • /
    • 제13권4호
    • /
    • pp.409-419
    • /
    • 2017
  • In order to analyze the vibration control effect of viscous damper in the concrete archaized buildings with lintel-column joints under seismic action, 3 specimens were tested under dynamic excitation. Two specimens with viscous damper were defined as the controlled component and one specimen without viscous damper was specified as the non-controlled component. The loading process and failure patterns were obtained from the test results. The failure characteristics, skeleton curves and mechanical behavior such as the load-displacement hysteretic loops, load carrying capacity, degradation of strength and rigidity, ductility and energy dissipation of the joints were analyzed. The results indicate that the load-bearing capacity of the controlled component is significantly higher than that of the non-controlled component. The former component has an average increase of 27.4% in yield load and 22.4% in ultimate load, respectively. Meanwhile, the performance of displacement ductility and the ability of energy dissipation for the controlled component are superior to those of the non-controlled component as well. Compared with non-controlled component, equivalent viscous damping coefficients are improved by 27.3%-30.8%, the average increase is 29.0% at ultimate load for controlled component. All these results reflect that the seismic performance of the controlled component is significantly better than that of the non-controlled component. These researches are helpful for practical application of viscous damper in the concrete archaizing buildings with lintel-column joints.

전자제품 쿨링 유닛용 초소형 타입 복합재 압력용기 개발 (Development of Subminiature Type 3 Composite Pressure Vessel for Cooling Unit in Electric Appliances)

  • 조성민;이승국;문종삼;류성기
    • 한국기계가공학회지
    • /
    • 제17권6호
    • /
    • pp.151-157
    • /
    • 2018
  • In this study, we have developed a composite pressure vessel that is compact and can store refrigerant at high pressure to increase the refrigerant volume. The composite pressure vessel is made of aluminum-based duralumin, which has high rigidity and excellent elongation in the inner liner, considering the characteristics of products in the aerospace and defense industry, where the safety of the applied product is considered as a priority. High strength carbon fiber was applied to the outside. In order to evaluate the performance of the developed product, burst test and cycling test were carried out. In burst test, an excellent safety margin equivalent to 2.7 times the operating pressure was obtained. In cycling test, a stable failure mode in which 'pre-burst leak' occurs is proved and the soundness of the product is proved.

차량 경량화를 위한 최적설계에 관한 연구 (A Study on the Optimal Design for Lightweight Vehicle Dash)

  • 이경일
    • 한국기계가공학회지
    • /
    • 제19권12호
    • /
    • pp.14-20
    • /
    • 2020
  • Currently, the automotive market is intensively researching eco-friendly vehicles such as EV vehicles and hydrogen vehicles. Further, research and developments for the future markets such as autonomous vehicles and the connective cars are coped up continuously along with the rising fuel economy regulations and the emission regulations. In this development, various sensors, batteries, and control devices are fused in order to decrease the weight of the vehicle. Moreover, since the fuel economy regulation is an issue, research on the weight reduction of body parts is underway. Therefore, in this work, a study is conducted to obtain the optimal design of the Dash part that separates the engine room and the passenger seat of the vehicle body by combining lightweight materials with high rigidity materials. The optimal design was obtained using the Finite Element Analysis. Further, AL5083 was used as the lightweight material and ASBC1470 was used for high strength materials. The parts made with this combination of materials had strength equivalent to that of the existing steel and the weight was reduced by 10%.