• Title/Summary/Keyword: Equivalent Plastic Strain

Search Result 125, Processing Time 0.021 seconds

A Study on the Plastic Zone of the Specimen at the Impact of Dynamic Load (동하중 충격시에 시험편의 소성영역에 관한 연구)

  • 한문식;조재웅
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.139-144
    • /
    • 2004
  • Dynamic crack initiation in ductile steel is investigated by means of impact loaded 3 point bend(PB) specimens. Results from non-viscoplastic and viscoplastic materials are compared. Their materials are applied with various impact velocities and static strain rates. The specimen has the size 320${\times}$750 mm with a thickness of 10 mm. A modified 3PB specimen design with reduced width at the ends has been developed in order to avoid the initial compressive load of the crack tip and also to avoid the uncertain boundary conditions at the impact heads. Numerical simulations are made by using the FEM code ABAQUS. Therefore, their results are plotted by shapes of the von Mises plastic stress and equivalent plastic strain of the specimens applied by various impact velocities.

Modelling of strain localization in a large strain context

  • Cescotto, S.;Li, X.K.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.6
    • /
    • pp.645-653
    • /
    • 1996
  • In order to avoid pathological mesh dependency in finite element modelling of strain localization, an isotropic elasto-plastic model with a yield function depending on the Laplacian of the equivalent plastic strain is implemented in a 4-node quadrilateral finite element with one integration point based on a mixed formulation derived from Hu-Washizu principle. The evaluation of the Laplacian is based on a least square polynomial approximation of the equivalent plastic strain around each integration point. This non local approach allows to satisfy exactly the consistency condition at each integration point. Some examples are treated to illustrate the effectiveness of the method.

Analytical Examination of Ductile Crack Initiation with Strength Mismatch under Dynamic Loading - Criterion for Ductile Crack Initiation Effect of Strength Mismatch and Dynamic Loading (Report 2) - (동적하중하에서의 강도적 불균질재의 연성크랙 발생한계의 해석적 검토 - 강도적 불균질 및 동적부하의 영향에 의한 연성크랙 발생조건 (제 2 보) -)

  • ;Mitsuru Ohata;Masahito Mochizuki;;Masao Toyoda
    • Journal of Welding and Joining
    • /
    • v.21 no.7
    • /
    • pp.49-58
    • /
    • 2003
  • It has been well known that ductile fracture of steel is accelerated by triaxiality stresses. The characteristics of ductile crack initiation in steels are evaluate quantitatively using two-parameter criterion based on equivalent plastic strain and stress triaxiality. Recently, the characteristics of critical crack initiation of steels are quantitatively estimated using the two-parameter, that is, equivalent plastic strain and stress triaxiality, criterion. This study is paid to the fundamental clarification of the effect of geometrical heterogeneity and strength mismatching, which can elevate plastic constraint due to heterogeneous plastic straining, and loading rate on critical condition to initiate ductile crack using two-parameter. Then, the crack initiation testing were conducted under static and dynamic loading. To evaluate the stress/strain state in the specimens especially under dynamic loading, thermal elastic-plastic dynamic FE-analysis considering the temperature rise was used. The result showed that the critical global strain to initiate ductile fracture in specimens with strength mismatch under various loading rate cu be estimated based on the local criterion, that is two-parameter criterion obtained on homogeneous specimens under static tension, by mean of FE-analysis taken into account accurately both strength mismatch and dynamic loading effects on stress/strain behavior.

Superfine Flip-Chip Interconnections in 20-$\mu\textrm{m}$-pitch

  • Bonkohara, Manabu
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.09a
    • /
    • pp.183-199
    • /
    • 2002
  • Reliability.The reliability strongly depended on the CTE of underfill resin..The fractured portion was identical with the maximum plastic equivalent strain..1 % or less value of the maximum plastic equivalent strain certified more than 1000 cycle of TCT life. UFB.Bonding accuracy was confirmed within2$2{\mu}{\textrm}{m}$..The fundamental bondability of UFB was confirmed with no damage around aluminum pads. Some dislocations and vacancies were observed at the interface, however, the atomic level bonding was confirmed. CBB.Dry process was applied to UBM removal.

  • PDF

Study on the Mechanical Behavior of Welded part in thick Plate (후판 용접부의 역학적 특성 -유한요소법에 의한 3차원 열탄소성 해석-)

  • 방한서
    • Journal of Welding and Joining
    • /
    • v.10 no.4
    • /
    • pp.250-258
    • /
    • 1992
  • In order to clarify the mechanical behavior of welding crack and to evaluate the mechanical characteristics of welded parts in thick plate, it is very important to accurately predict the welding deformation and residual stress including transient state before welding. In this paper, the theory of a three-dimensional elasto-plastic problem for the analysis of mechanical phenomenon of welding joint on the plate is developed into an efficient and accurate method based on the finite element method, and then several examples are considered by using the proposed model. The results of numerical analyses are discussed in the viewpoint of the mechanical characteristics of the distribution of three-dimensional welding residual stresses, plastic strains and their production mechanism on the thick plate.

  • PDF

Approximate residual stress and plastic strain profiles for laser-peened alloy 600 surfaces

  • Eui-Kyun Park ;Hyun-Jae Lee ;Ju-Hee Kim ;Yun-Jae Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1250-1264
    • /
    • 2023
  • This paper presents approximate in-depth residual stress and plastic strain profiles for laser-peened alloy 600 surface via FE analysis. In approximations, effects of the initial welding residual stress and the number of shots are quantified. Based on FE analysis results, residual stress profiles are quantified by two variables; the maximum difference in stress before and after LSP, and the depth up to which the compressive residual stress exists. Plastic strain profiles are quantified by one variable, the maximum equivalent plastic strain at the surface. The proposed profiles are validated by comparing with published LSP experimental results for welded plates. Effects of the initial welding residual stress and the number of shots on these variables are discussed. The proposed profile can be directly applied to predict the mitigation effect of LSP on PWSCC and to efficiently perform structural integrity assessment of laser peened nuclear components.

Behavior of ductile crack initiation with strength mismatch from notch root (강도적 불균질재의 노치 표면에서의 연성크랙 발생 거동)

  • 안규백;대연윤;방한서;풍전정남
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.246-248
    • /
    • 2004
  • It has been well known that ductile fracture of steels is accelerated by triaxial stresses. The characteristics of ductile crack initiation in steels are evaluated quantitatively using two-parameters criterion based on equivalent plastic strain and stress triaxiality. This study provides the fundamental clarification of the effect of strength mismatching, which can elevate plastic constraint due to heterogeneous plastic straining, loading mode and loading rate on critical condition to initiate ductile crack from notch root using equivalent plastic strain and stress triaxiality based on the two-parameter criterion obtained on homogeneous specimens under static tension. The critical condition to initiate ductile crack from notch root for strength mismatched bend specimens under both static and dynamic loading would be almost the same as that for homogeneous tensile specimens with circumferential sharp notch under static loading.

  • PDF

The ductile crack initiation behavior of strength mismatch by a location of notch root (노치위치의 변화에 따른 강도적 불균질재의 연성크랙 발생 거동)

  • An, Gyu-Baek;Dae, Jeon-Chung;Bang, Han-Seo;PungJeon, Jeong-Nam
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.253-255
    • /
    • 2005
  • It has been well known that ductile fracture of steels are accelerated by triaxial stresses. The characteristics of ductile crack initiation in steels are evaluated quantitatively using two-parameters criterion based on equivalent plastic strain and stress triaxiality. The present study focuses on the effects of strength mismatching, which can elevate plastic constraint due to heterogeneous plastic straining, on critical condition to initiate ductile crack from notch root using equivalent plastic strain and stress triaxiality. In this study evaluate the criterion for ductile crack initiation in strength mismatch specimen effect of location of notch root.

  • PDF

On the Effect of Plate Curvature on Welding Deformation (용접변형에의 곡률의 영향에 관한 연구)

  • Lee, Joo-Sung;Lee, Jin-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.67-73
    • /
    • 2010
  • A simplified finite element analysis has been used to predict the weld-induced deformation to bead-on-plate welding of steel plates having curvatures in the welding direction. In this study, the equivalent loading method based on inherent strain was used to investigate the effect of longitudinal curvature on the weld-induced deformation of curved plates. Equivalent loads were derived from the inherent strain distribution around the weld line, and the loads were used for linear finite element analyses. These kinds of numerical simulations can, of course, be performed by using the rigorous thermalelastic-plastic analysis method. This approach is not, however, practical for use in weld-induced deformation analysis of large and complex structures, such as ship structures, in view of computing time and cost. The present equivalent load approach has been applied to several plate models having curvatures in the welding direction, and the results are compared with those obtained by thermal-elastic-plastic analysis and also with those obtained by the other simplified method found in reference. As far as the present results are concerned, the weld-induced deformation of curved plates can be accurately predicted by the method presented in this paper.

Modeling of a Ductile Fracture Criterion for Sheet Metal Considering Anisotropy (판재의 이방성을 고려한 연성파단모델 개발)

  • Park, N.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.25 no.2
    • /
    • pp.91-95
    • /
    • 2016
  • This paper is concerned with modeling of a ductile fracture criterion for sheet metal considering anisotropy to predict the sudden fracture of advanced high strength steel (AHSS) sheets during complicated forming processes. The Lou−Huh ductile fracture criterion is modified using the Hill’s 48 anisotropic plastic potential instead of the von Mises isotropic plastic potential to take account of the influence of anisotropy on the equivalent plastic strain at the onset of fracture. To determine the coefficients of the model proposed, a two dimensional digital image correlation (2D-DIC) method is utilized to measure the strain histories on the surface of three different types of specimens during deformation. For the derivation of an anisotropic ductile fracture model, principal stresses (𝜎1,𝜎2, 𝜎3) are expressed in terms of the stress triaxiality, the Lode parameter, and the equivalent stress (𝜂𝐻, 𝐿,) based on the Hill’s 48 anisotropic plastic potential. The proposed anisotropic ductile fracture criterion was quantitatively evaluated according to various directions of the maximum principal stress. Fracture forming limit diagrams were also constructed to evaluate the forming limit in sheet metal forming of AHSS sheets over a wide range of loading conditions.