• Title/Summary/Keyword: Equivalent Material Property

Search Result 74, Processing Time 0.031 seconds

Finite Element Analysis Through Mechanical Property Test and Elasto-plastic Modeling of 2.5D Cf/SiCm Composite Analysis (2.5D Cf/SiCm 복합재의 기계적 물성 시험과 탄소성 모델링을 통한 유한요소해석)

  • Lee, MinJung;Kim, Yeontae;Lee, YeonGwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.9
    • /
    • pp.663-670
    • /
    • 2020
  • A study on mechanical property characterization and modeling technique was carried out to approximate the behaviour of structures with 2.5D C/SiC material. Several tensile tests were performed to analyze the behaviour characteristics of the 2.5D C/SiC material and elastic property was characterized by applying a mathematical homogenization and a modified rule of mixture. SiC matrix representing the elasto-plastic behavior approximates as a bilinear function. Then the equivalent yield strength and equivalent plastic stiffness were calculated by minimizing errors in experiment and approximation. RVE(Representative Volume Element)was defined from the fiber and matrix configuration of 2.5D C/SiC and a process of calculating the effective stiffness matrix by applying the modified rule of mixture to RVE was implemented in the ABAQUS User-defined subroutine. Finite element analysis was performed by applying the mechanical properties of fiber and matrix calculated based on the proposed process, and the results were in good agreement with the experimental results.

The Assessment on the Characteristics of Quantitative Image in Digora$\textregistered$ (Digora$\textregistered$에서 정량영상의 특성에 대한 평가)

  • Kim Jae-Duk
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.29 no.2
    • /
    • pp.397-405
    • /
    • 1999
  • Purpose: To clarify the usefulness and the limitation of Digora system/sup (R)/ by evaluating the physical characteristics as the quantitative image on Image Plate(Ip). Materials and Methods: Radiograms were taken by Heliodent MD(Siemens Co.. Germany) with the image plate for adult. Cu-step wedge as reference material. and three pieces of dry mandibular bone. Image analysis was performed by single color enhancement. density measurement with histogram. The relationship between the exposure conditions and the distribution of the pixel values of the image. the variation of pixel values of each step of Cu-step wedge at two different area and Cu-equivalent value of three pieces of dry mandibular bone measure by the conversion equation. Results: There was no linear relationship between the exposure condition and the average pixel value of the image. of which the distribution was not even. The pixel value differences between the center portion and the periphery were ranged from 60 to 70 in vertical plane and from 15 to 26 in horizontal plane. Two plot profile formed at two different areas of the Cu-step wedge were different. The measured Cu-equivalent values showed the discrepancy among the times of measurement. Conclusion: As above results. Image Plate(Ip) of Digora system/sup (R)/ showed the limitation as the quantitative image. The physical property of IP was expected to need to be compensated for the quantitative evaluation of the bone or others

  • PDF

Vibration Analysis of HDD Actuator with Equivalent Finite Element Model of VCM Coil

  • Kim, Dong-Woohn;Lee, Jin-Koo;Park, No-Cheol;Park, Young-Pil
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.679-690
    • /
    • 2003
  • As the rate of increase in areal density of the HDD has accelerated, dynamic characteristics of the HDD actuator need to be improved with respect to the performance of the tracking servo and shock transmission. Therefore, it is important to analyze the vibration characteristic of the HDD actuator that consists of the VCM part, E-block and pivot bearing. In this paper, vibration modes of the HDD actuator are investigated the using finite element and experimental modal analyses methods. To develop a detailed finite element model, finite element models of each components of the actuator assembly are constructed and tuned to the results of the EMA. The VCM coil is modeled as an equivalent finite element model that has an orthotropic material property using auto-model updating program. Auto-model updating program with improved sensitivity based iterative method is applied to build a detailed finite element model using the result of the EMA. A detailed finite element model of the HDD actuator is then constructed and analyzed.

Thermo-Elastic Analysis of the Spatially Reinforced Composite Nozzle (다방향으로 입체 보강된 복합재 노즐의 열탄성해석)

  • 유재석;김광수;이상의;김천곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.100-105
    • /
    • 2002
  • This paper predicts the material properties of spatially reinforced composites (SRC) and analyzes the thermo-elastic behavior of a kick motor nozzle manufactured from that material. To find the appropriate SRC structure for the nozzle throat that satisfies given design conditions, the equivalent material properties of the SRC are predicted using the superposition method for those of rod and matrix. Studied are the elastic behavior, temperature distribution, and thermo-elastic behavior of a kick motor nozzle composed of carbon/carbon SRC as a throat part. The elastic deformation of the nozzle composed of 3D carbon/carbon SRC shows asymmetry in a circumferential direction. However, 4D carbon/carbon SRC nozzle shows uniform deformation in the circumferential direction. Stress concentration in connecting parts of the kick motor nozzle is ultimately high due to the high temperature gradient in each connecting part. The thermo-elastic deformations of both the 3D and the 4D SRC nozzles are uniform in the circumferential direction due to the isotropy of CTE of each SRC. The deformation of the 3D SRC nozzle is a slightly smaller than that of the 4D SRC nozzle in the nozzle throat, which is favorably effective on rocket thrust. The circumferential stress is the most critical component of the kick motor nozzle. The 4D SRC nozzle having 1,1,1,1.7 diameters in each direction has the smallest circumferential stress among several SRC nozzles.

  • PDF

Topology Optimization for Large-displacement Compliant Mechanisms Using Element Free Galerkin Method

  • Du, Yixian;Chen, Liping
    • International Journal of CAD/CAM
    • /
    • v.8 no.1
    • /
    • pp.1-10
    • /
    • 2009
  • This paper presents a topology optimization approach using element-free Galerkin method (EFGM) for the optimal design of compliant mechanisms with geometrically non-linearity. Meshless method has an advantage over the finite element method(FEM) because it is more capable of handling large deformation resulted from geometrical nonlinearity. Therefore, in this paper, EFGM is employed to discretize the governing equations and the bulk density field. The sensitivity analysis of the optimization problem is performed by incorporating the adjoint approach with the meshless method. The Lagrange multipliers method adjusted for imposition of both the concentrated and continuous essential boundary conditions in the EFGM is proposed in details. The optimization mathematical formulation is developed to convert the multi-criteria problem to an equivalent single-objective problem. The popularly applied interpolation scheme, solid isotropic material with penalization (SIMP), is used to indicate the dependence of material property upon on pseudo densities discretized to the integration points. A well studied numerical example has been applied to demonstrate the proposed approach works very well and the non-linear EFGM can obtain the better topologies than the linear EFGM to design large-displacement compliant mechanisms.

Preliminary Study on Linear Dynamic Response Topology Optimization Using Equivalent Static Loads (등가정하중을 사용한 선형 동적반응 위상최적설계 기초연구)

  • Jang, Hwan-Hak;Lee, Hyun-Ah;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1401-1409
    • /
    • 2009
  • All the forces in the real world act dynamically on structures. Design and analysis should be performed based on the dynamic loads for the safety of structures. Dynamic (transient or vibrational) responses have many peaks in the time domain. Topology optimization, which gives an excellent conceptual design, mainly has been performed with static loads. In topology optimization, the number of design variables is quite large and considering the peaks is fairly costly. Topology optimization in the frequency domain has been performed to consider the dynamic effects; however, it is not sufficient to fully include the dynamic characteristics. In this research, linear dynamic response topology optimization is performed in the time domain. First, the necessity of topology optimization to directly consider the dynamic loads is verified by identifying the relationship between the natural frequency of a structure and the excitation frequency. When the natural frequency of a structure is low, the dynamic characteristics (inertia effect) should be considered. The equivalent static loads (ESLs) method is proposed for linear dynamic response topology optimization. ESLs are made to generate the same response field as that from dynamic loads at each time step of dynamic response analysis. The method was originally developed for size and shape optimizations. The original method is expanded to topology optimization under dynamic loads. At each time step of dynamic analysis, ESLs are calculated and ESLs are used as the external loads in static response topology optimization. The results of topology optimization are used to update the design variables (density of finite elements) and the updated design variables are used in dynamic analysis in a cyclic manner until the convergence criteria are satisfied. The updating rules and convergence criteria in the ESLs method are newly proposed for linear dynamic response topology optimization. The proposed updating rules are the artificial material method and the element elimination method. The artificial material method updates the material property for dynamic analysis at the next cycle using the results of topology optimization. The element elimination method is proposed to remove the element which has low density when static topology optimization is finished. These proposed methods are applied to some examples. The results are discussed in comparison with conventional linear static response topology optimization.

A Study for Relation Between Fatigue and Structural Members on Othortropic Steel Deck (직교이방성 강바닥판 피로와 구조부재의 관계에 대한 연구)

  • Park, Jong In;Hong, Sung Nam;Kim, Tae Wan;Park, Sun Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.41-50
    • /
    • 2012
  • Improvement of steel material quality made fatigue problems more critical than failure of the material itself. In many cases, cracks on the welded parts of steel deck bridges are reported against the failure of steel materials. And the cracks are caused by alternate stress on the welded parts due to live loads on the bridge. The range of alternate stress on the welded part is related to property of the sections which compose othortropic steel deck. Othortropic steel deck is mainly composed of deck plate, ribs and floor beams, wearing surface, etc. In this paper, a methology to estimate the alternate stress for pthortropic steel deck using Pelikan-Esslinger method and signed Von-Mises equivalent stress is proposed first. Parametric study served references for fatigue stresses when designing or repairing othortropic steel deck bridges, by analyzing relationship between alternate stress range and properties of steel deck members.

Dielectric property and conduction mechanism of ultrathin zirconium oxide films

  • Chang, J.P.;Lin, Y.S.
    • Electrical & Electronic Materials
    • /
    • v.16 no.9
    • /
    • pp.61.1-61
    • /
    • 2003
  • Stoichiometric, uniform, amorphous ZrO$_2$ films with an equivalent oxide thickness of ∼1.5nm and a dielectric constant of ∼18 were deposited by an atomic layer controlled deposition process on silicon for potential application in meta-oxide-semiconductor(MOS) devices. The conduction mechanism is identified as Schottky emission at low electric fields and as Poole-Frenkel emission at high electric fields. the MOS devices showed low leakage current, small hysteresis(〈50mV), and low interface state density(∼2*10e11/cm2eV). Microdiffraction and high-resolution transmission electron microscopy showed a localized monoclinic phase of ${\alpha}$-ZrO$_2$ and an amorphous interfacial ZrSi$\_$x/O$\_$y/ layer which has a correspondign dielectric constant of 11

  • PDF

Study on equivalent material property of Tetra Chiral Honeycomb structure using finite element method (유한 요소 해석을 이용한 Tetra Chiral Honeycomb 구조의 등가 물성치에 대한 연구)

  • Park, Jung-Hoon
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.190-194
    • /
    • 2016
  • 자연에서 안정적이고 경제성이 높은 구조로 벌집 구조가 많이 언급이 된다. 이러한 벌집 구조의 특징으로 인해 많은 공학자들이 그 구조를 모방하여 적용하고 있다. 벌집 구조에도 다양한 종류가 존재하지만 그 중 음의 푸아송 비(Poisson's ratio)를 갖는 Chiral Honeycomb 구조가 많이 연구되고 있다. 푸아송 비는 물질이나 구조의 고유한 물성치로 종, 횡 방향의 변형율로 나타내며 이 값으로 외부 조건으로부터의 변형을 예측 할 수 있게 된다. 흔히 푸아송 비는 양의 값을 가지지만 Chiral Honeycomb 구조는 음의 푸아송 비를 가져 기존의 구조와는 다른 기계적 성질을 가지게 된다. 이 논문에서는 Chiral Honeycomb 구조 중에서도 4개의 관절(ligament)를 가지는 Tetra Chiral Honeycomb 구조에 대해 EDISON용 CASADsovler 프로그램을 통해 유한 요소 해석을 수행하여 등가 물성치를 구해 보았으며 기존 실험의 값들과 비교를 통해 해석을 위해 필요한 적절한 대표 체적에 대해 확인해 보았다.

  • PDF

Experiment and Analysis on Impact of Tapered Double Cantilever Beam with Aluminum Alloy (알루미늄 합금으로 된 경사진 이중외팔보의 충돌에 대한 실험 및 해석)

  • Gao, Teng;Cho, J.U.;Cheon, Seong S.
    • Composites Research
    • /
    • v.27 no.2
    • /
    • pp.72-76
    • /
    • 2014
  • This study is investigated by experiments and analyses at rates of 2.5m/s, 7.5m/s and 12.5m/s on the impact of tapered double cantilever beam specimens with aluminium alloy. It aims to examine the mechanical property of aluminum alloy by evaluating energy release rate and equivalent stress happened at the bonded part of specimen. Because bonding force remains after the separation of specimen, the energy release rate at the bonded part becomes highest. As crack propagates and the high stress happens at the end of the bonded part, the maximum equivalent stress becomes higher at the last stage, regardless of impact rate. These results of experiments and analyses are the data necessary to develop the safe design of composite material to prevent crack propagation due to impact.