• Title/Summary/Keyword: Equipotential Bonding

Search Result 19, Processing Time 0.031 seconds

Assessment of Equipotential Bonding and Electrical Continuity in Buildings (건축물의 등전위 본딩 및 전기적 연속성 평가)

  • Gil, Hyoung-Jun;Kim, Dong-Woo;Kim, Dong-Ook;Lee, Ki-Yeon;Moon, Hyun-Wook;Kim, Hyang-Kon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.385-386
    • /
    • 2009
  • This paper deals with assessment of equipotential bonding and electrical continuity in Buinding by investigation on the spot at construction site. The assessment was carried out for continuity of steelwork in reinforced concrete structure, bonding conductor, protective conductor. A new grounding system based on international standards includes unity grounding system, structure grounding utilizing steel reinforced concrete, equipotential bonding, use of surge protective device.

  • PDF

Investigation on the Spot for Grounding Systems in Buildings

  • Gil, Hyoung-Jun;Kim, Dong-Woo;Kim, Dong-Ook;Kim, Hyang-Kon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.3
    • /
    • pp.39-45
    • /
    • 2010
  • This paper deals with investigation on the spot for grounding systems of buildings based on international standards at construction sites. The investigation was carried out for grounding method, grounding type, shape of grounding electrode, grounding for a lightning protection system, continuity of steelwork in reinforced concrete structures, etc. The investigation on the spot was performed by a researcher and engineer with over fifteen years of industry experience all over the country. As a result of the investigation on the spot in 13 buildings, common grounding and structure grounding methods were dominant. The safety improvement methods include installation of equipotential bonding conductors for the connection to the main earthing terminal, equipotential bonding conductors for supplementary bonding, use of Surge Protective Devices (SPD), and safe connections between earthing conductors and the rebar.

A study on field application of equipotential-bonding according to IEC 60364 (IEC 60364 도입에 따른 등전위본딩의 현장 적용방법 연구)

  • Lee, Kang-Hee;Lee, Hyo-Jin;Kim, Han-Su
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1635-1636
    • /
    • 2015
  • 인체감전보호의 기본안전사항을 규정하는 IEC 60479, IEC 61140은 KS표준으로 이미 도입되었다. 특히 IEC 60364는 KS표준뿐만 아니라 전기설비기술기준의 판단기준에도 도입하여 적용하고 있다. IEC 60364에서 규정하고 있는 감전에 대한 보호원칙은 IEC 60479, IEC 61140에서 규정하는 기본개념을 기초로 한 것으로써, 이 표준들 간에 보호개념의 친숙화가 필요하다.

  • PDF

Hazards and Solutions of Loss of the PEN Conductor in TN-C-S System (TN-C-S계통에서 PEN도체의 단선고장의 위험성 및 보호대책)

  • Lee, Bok-Hee;Lee, Kyu-Sun;Ahn, Chang-Hwan;Kim, Han-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.8
    • /
    • pp.113-120
    • /
    • 2007
  • This paper presents the electric shock hazards and solutions of loss of the combined protective and neutral (PEN) conductor in TN-C-S system. In order to mitigate the touch voltage on exposed-conductive-parts in a break in the PEN conductor, the touch voltages on exposed-conductive-parts in a break in the PEN conductor were experimentally investigated as a function of the ground resistances of the source grounding electrode and customer's additional grounding electrode. As a result, the equipotential bonding is one of important requirements for installations supplied by TN-C-S system. A solution of mitigating the touch voltages on exposed-conductor-parts caused by a loss of the PEN conductor would be the installation of the additional grounding electrode at the customer's service entrance. The ground resistance of additional grounding electrode necessary to limit the touch voltage to a safety voltage of less than 50[V] depends on the load and circuit parameters. In addition, the undervoltage sensing devices oner affordable solutions to detect a loss of the PEN conductor in TN-C-S system.

Evaluation of the Protection Performance of TT and TN Systems for Low-Voltage Consumers Against Lightning Surges (저압수용가에 공급하는 TT, TN계통의 뇌서지에 대한 보호성능의 평가)

  • Lee, Kyu-Sun;Choi, Jong-Hyuk;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.6
    • /
    • pp.67-74
    • /
    • 2010
  • Most of domestic low-voltage consumers are supplied from the TN-C system of KEPCO, but their load installations have established according to the national statutory standard for electrical installations based on the TT system. In this work, to propose the proper system earthing arrangements of ensuring the protection of information-technology equipment against lightning surges, the protection performance of TT and TN systems against lightning surges was investigated. As a result, when lightning surge was injected to the neutral line of distribution system, the potential difference between the equipment earth terminal and neutral point of low-voltage mains in a TT system was significantly raised. The TT system is not advised due to the risk of damage to the sensitive computer equipment. Main equipotential bonding is an important requirement for protection of low-voltage installations against lightning surges. The TN system provides the best means to reduce the incoming lightning surges through the neutral line of low-voltage service systems. In addition, It is highly recommended to install the additional earthing at the service position of low-voltage consumers.

A Study on a grounding system of electric railway (전기철도 접지시스템에 대한 연구)

  • Lee, Ho-Jong;Shin, Myoung-Ho
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1482-1504
    • /
    • 2007
  • An electrical railway system uses high voltage system for train traction and low voltage system for train control. Railway systems are broadly distributed across mountains, sea sides and cities. Electrical accidents provoke the death and injury of a human being and the damage of the equipment by the overcurrent due to the catenary dropping and by the overvoltage due to lightning. Grounding systems are adopted for the protections of the system from the overcurrent and the overvoltage. Isolation grounding for each system can be easily installed. However, the closed circuits between grounding systems can be occurred. The currents flow through the closed circuits cause the abnormal operation of the system. To overcome the problem of the isolation grounding, the equipotential bonding is usually adopted. The equipotential bonding should have very small grounding resistance. In this paper, we showed the transition from the isolation grounding system to the common grounding system and presented the comparison and the analysis of two grounding systems by simulation. In addition, we proposed the direction for a new grounding system of electric railway.

  • PDF

The Effect Analysis in case of the Countermeasure and Trouble-Examples for the Noise of Control Equipment System (제어설비 계통에서의 노이즈장해 사례 및 대책별 효과 분석)

  • Kim, Hong-Ju;Yoo, Sang-Bong;Lee, Ho-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.6
    • /
    • pp.75-81
    • /
    • 2005
  • Recently an increase of sensor and power trandusers in control equipment system has caused many kinds of noise the mis-operation equipment and demage program memories of control circuits. In this paper, the noise character of the various control equipment system has been measured and analyzed. Additionally, the countermeasure to reduce noise like as Noise Cut Transformer, Equipotential Bonding, Power Noise Rejector, Noise Filter has been applied and confirmed the effective results to solve the trouble of noise.