• Title/Summary/Keyword: Equipment load

Search Result 1,121, Processing Time 0.028 seconds

Cost-Benefit Analysis on Participation of High Efficient Equipment in Demand-Side Bidding (고효율기기의 수요측입찰 참여시의 비용-이익 분석)

  • Won Jong-Ryul;Kim Jung-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.8
    • /
    • pp.396-400
    • /
    • 2005
  • This paper proposes the cost analysis on the energy efficient equipment when this equipment is participated in the demand-side bidding. Conventional demand-side bidding is exercised through load re-distribution. However if this load reduction is exercised by the use of high efficient equipment, its effect will be assumed to be more economical. This paper analyses this cost-benefit effect of high efficient equipment in the demand-side bidding.

A comparative analysis of load behavior of the fixing equipments for transporting unit modules (유닛모듈 운반용 고정장치의 하중거동 비교 분석)

  • Kim, Kyoon-tai;Kim, Seok;Jun, Young-Hun;Kim, Tae-Yeong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.146-147
    • /
    • 2015
  • This paper compares load behavior of two fixing equipments for transporting unit modules. The suggested fixing equipment shows higher limit load than an existing fixing equipment, which proves that the suggested fixing equipment have higher safety.

  • PDF

Study on Transient Structural Load Analysis of Aircraft Suspension Equipment (항공기용 서스펜션 장비의 천이구조하중해석에 대한 연구)

  • Cha, Jinhyun;Chung, Sangjun;Choi, Kwanho
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.3
    • /
    • pp.23-30
    • /
    • 2015
  • In this study, a transient structural load analysis system was constructed to calculate the applied load on the suspension equipment corresponding to the aircraft flight conditions based on military specifications. Aircraft flight data (altitude, velocity, acceleration, angle of attack and etc. at aircraft center of gravity) were used as input parameters and the calculated load of the suspension equipment at wings on the left and right side was printed out for the structural load analysis. As a calculation procedure, first of all, load analysis was carried out at the center of gravity of the external store, Secondly, a trial reaction force analysis was conducted on hook and swaybrace of suspension equipment. All procedure of calculations was programed to analyze the structural load automatically. To verify the numerical results, structural load analysis using the experimental flight data was performed.

Effects of 119 Paramedics Wearing Personal Protective Equipment on Blood Pressure, Pulse, and Breathing (119구급대원의 개인보호장비 착용이 혈압·맥박·호흡에 미치는 영향)

  • Yi, Seung-Ku;Kong, Ha-Sung
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.3
    • /
    • pp.89-96
    • /
    • 2021
  • This study analyzed the physical changes in 119 paramedics transporting equipment at the emergency site and performing post-cardiopulmonary resuscitation through experiments. First, the average heart rate increased by about 25 times comparing CPR was performed without physical load and with personal protective equipment after moving equipment. In the third quartile, it increased to about 27 times. Second, when CPR was performed without physical load, and CPR was performed after moving the equipment with personal protective equipment, both the body temperature was raised and the rising body temperature was measured within normal body temperature. Third, the change in respiration rate increased by 7 times on average comparing CPR was performed without physical load and CPR was performed after moving the equipment while wearing personal protective equipment. In the third quartile, it increased to about 11 times. Finally, the change in blood pressure increased by 26.6 mmHg on average comparing CPR was performed without physical load and with wearing personal protective equipment after moving the equipment, and increased by 31.2 mmHg on average in the third quartile.

Device Development for Measurement of Bed Load and Suspended Particle Movement in Coastal Water and its Application to Field (연안의 부유물 이동 측정 장치 개발과 현장 적용)

  • Lee, Chung Il
    • Journal of Environmental Science International
    • /
    • v.23 no.2
    • /
    • pp.323-330
    • /
    • 2014
  • Transport of bed load and suspended particle in coastal waters is main factor causing change in shoreline, and effective measurement method and appropriate equipment is required. To measure bed load and suspended particle transport an equipment was designed and manufactured, and it was applied in the field. The equipment consists of four main elements, body supporter, bed load and suspended particle sampler, sampler support and lock. Eight samplers were installed along the circumference of each supporter, and each sample is a 45-degree intervals. The field experiment was done once along Gyeongpo beach in August 2013. This note described the design and function of the equipment and results of field experiments.

Buckling of axial compressed cylindrical shells with stepwise variable thickness

  • Fan, H.G.;Chen, Z.P.;Feng, W.Z.;Zhou, F.;Shen, X.L.;Cao, G.W.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.1
    • /
    • pp.87-103
    • /
    • 2015
  • This paper focuses on an analytical research on the critical buckling load of cylindrical shells with stepwise variable wall thickness under axial compression. An arctan function is established to describe the thickness variation along the axial direction of this kind of cylindrical shells accurately. By using the methods of separation of variables, small parameter perturbation and Fourier series expansion, analytical formulas of the critical buckling load of cylindrical shells with arbitrary axisymmetric thickness variation under axial compression are derived. The analysis is based on the thin shell theory. Analytic results show that the critical buckling load of the uniform shell with constant thickness obtained from this paper is identical with the classical solution. Two important cases of thickness variation pattern are also investigated with these analytical formulas and the results coincide well with those obtained from other authors. The cylindrical shells with stepwise variable wall thickness, which are widely used in actual engineering, are studied by this method and the analytical formulas of critical buckling load under axial compression are obtained. Furthermore, an example is presented to illustrate the effects of each strake's length and thickness on the critical buckling load.

Optimal Arrangement of Resilient Mount installed on Frame Support Structure at Shipboard Equipment under Shock Load (충격하중하의 탑재장비 프레임 지지구조의 탄성마운트 배치 최적화에 관한 연구)

  • Ji, Yong Jin;Kwak, Jeong Seok;Lee, Hyun Yup;Kim, Sung Chan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.4
    • /
    • pp.298-304
    • /
    • 2015
  • Shipboard equipment in naval ships should be designed to be safe under the shock load. Very high stress due to the shock load can be effectively reduced by the resilient mounts considering the mount capacity and dynamic characteristics. An optimum arrangement of resilient mount installed to absorb the shock energy is addressed to assess the safety of ship structure and shipboard equipment subjected to the shock load. Structural responses are analyzed for both frame structure supporting the shipboard equipment subject to the shock load with and without the resilient mounts. The shock absorbability of the resilient mount is evaluated by the results of structural response analysis; meanwhile, several types of shock analyses considering the arrangement of resilient mounts are carried out and the shock responses are compared to verify the effect of the arrangement. Thereafter, optimum arrangements are obtained by means of Genetic algorithm (GA) considering the different capacities of resilient mount. Stress, deformation and dynamic feature at the frame structure supporting the shipboard equipment under the shock load are also discussed in order to meet the capacity of resilient mount.

A study on optimizing the electrical load analysis for modifying the avionics equipment in an aged aircraft

  • Yoon, Inbok;An, Kyeongsoo
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.4
    • /
    • pp.47-56
    • /
    • 2021
  • In the management of aged aircraft, used avionics equipment is replaced with new ones to improve the performance and extend the life cycle of the aircraft. In this case, considering airworthiness, it is necessary to check whether the aircraft has sufficient electricity in the electric generator or the electrical distribution system, in accordance with the maximum electricity consumption of the new avionics equipment. Accordingly, this paper reviews a few airworthiness standards and guidelines associated with the electrical load analysis when an avionics equipment is upgraded in an aged aircraft, and proposes an optimization method for the electrical load analysis. In addition, it verifies the validity of the proposed method via the QFD theory, and is currently available for upgrading the performance of aged aircraft.

Characterization of Live Fire Load in Buildings - Heat Release Characteristics of Typical Live Fire Load in Bookstore - (건축물의 적재가연물 특성에 관한 연구 -대형서점의 적재가연물 연소발열성상-)

  • Nam, Dong-Gun;Yuji, Hasemi;Jung, Jong-Jin;Lim, Woo-Sub;SaKong, Seong-Ho
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.3-6
    • /
    • 2008
  • Heat release characteristics of live fire load are an important parameter for performance oriented fire safety design of a building. While investigations have been carried out on the fire load and its burning behavior in office, residential and commercial buildings and so on, little effort has been paid for the rational treatment of fire load in bookstore. In this report, burning behavior of typical combustible objects in bookstore are studied by measuring heat release rates of bookshelf with book.

  • PDF

Development of a Workload Index for Monitoring Durability Test of an Excavator (굴착기 내구시험 모니터링을 위한 작업부하 지표 개발)

  • Cho, Jae-Hong;Na, Seon-Jun;Kim, Min-Seok;Park, Myeong-Kwan
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.29-35
    • /
    • 2022
  • In this paper, we developed a workload index for monitoring the durability test using operation information of an excavator. First, the acceleration and cylinder pressure were selected as load factors by analyzing operation data. Through load correlation analysis according to each load factor, Root Mean Square (RMS) and Work Load Range (WLR) were respectively derived as a load feature representing mechanical load. In addition, the workload index was used to quantify load features. For applying the workload index to monitoring, a real-time monitoring system consisting of sensors and embedded controller was installed on the excavator and the system was integrated with a remote monitoring environment using a wireless network. Results of load monitoring and analysis verified that the developed workload index was effective from the viewpoint of the relative comparison of the workload.