• 제목/요약/키워드: Equilibrium calculations

검색결과 148건 처리시간 0.022초

Charge Transport Properties of Boron/Nitrogen Binary Doped Graphene Nanoribbons: An ab Initio Study

  • Kim, Seong Sik;Kim, Han Seul;Kim, Hyo Seok;Kim, Yong Hoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.180.2-180.2
    • /
    • 2014
  • Opening a bandgap by forming graphene nanoribbons (GNRs) and tailoring their properties via doping is a promising direction to achieve graphene-based advanced electronic devices. Applying a first-principles computational approach combining density functional theory (DFT) and DFT-based non-equilibrium Green's function (NEGF) calculation, we herein study the structural, electronic, and charge transport properties of boron-nitrogen binary edge doped GNRs and show that it can achieve novel doping effects that are absent for the single B or N doping. For the armchair GNRs, we find that the B-N edge co-doping almost perfectly recovers the conductance of pristine GNRs. For the zigzag GNRs, it is found to support spatially and energetically spin-polarized currents in the absence of magnetic electrodes or external gate fields: The spin-up (spin-down) currents along the B-N undoped edge and in the valence (conduction) band edge region. This may lead to a novel scheme of graphene band engineering and benefit the design of graphene-based spintronic devices.

  • PDF

철계 소결합금의 오스테나이트 안정성 (Austenite Stability of Sintered Fe-based Alloy)

  • 최승규;서남혁;전준협;손승배;이석재
    • 한국분말재료학회지
    • /
    • 제27권5호
    • /
    • pp.414-419
    • /
    • 2020
  • In the present study, we investigated the austenite stability of a sintered Fe-based nanocrystalline alloy. The volume fraction of austenite was measured based on the X-ray diffraction data of sintered Fe-based nanocrystalline alloys, which were prepared by high-energy ball milling and spark plasma sintering. The sintered alloy samples showed a higher volume fraction of austenite at room temperature as compared to the equilibrium volume fraction of austenite obtained using thermodynamic calculations, which resulted from the nanosized crystalline structure of the sintered alloy. It was proved that the austenite stability of the sintered Fe-based alloy increased with a rise in the amount of austenite stabilizing elements such as Mn, Ni, and C; however, it increased more effectively with a decrease in the actual grain size. Furthermore, we proposed a new equation to predict the martensite starting temperature for sintered Fe-based alloys.

Effects of the length of linkers in metal-azobenzene-metal junction on transmission and ON/OFF ratio

  • Yeo, Hyeonwoo;Kim, Han Seul;Kim, Yong-Hoon
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제6회(2017년)
    • /
    • pp.499-505
    • /
    • 2017
  • Photoisomerizing molecules which can transform their structure by the light irradiation have great deal for the application of photo-switching devices. And azobenzene is the representive type of the photoisomerizing molecules. It can transform their trans- structures into cis- structure as the light for certain wave lengths they receive. This property shows the potential of ON/OFF switching functionalization which can be used into the nano scale photo switch. Furthermore, many studies are interested in the organic linkers that connect the azobenzene and metal electrodes. We used S, $CH_2S$, $(CH_2)_4S$ as the linker to watch the influence of linkers for electronic properties. So We suggest a photoswitching device based on the vertical junction using the first-principles calculations with density functional theory and non-equilibrium Greens function (NEGF). By analyzing the electronic structure and tunneling current caused by the structural difference of the system between cis- and trans- azobenzene, the difference in switching mechanism, ON/OFF ratio and transmission will be watched as the linker changes. And finally We will suggest which linker would be the better for the optimal device architecture which can achieve high control of the ON/OFF photocurrent ratio. This result will show the potential of azobenzene-based photoswitch and provide the critical insight in constructing the optimal device architecture.

  • PDF

유문암-열수 반응과 유광 견운모 광상의 성인 (Hydrothermal Solution-Rhyolite Reaction and Origin of Sericitite in the Yukwang Mine)

  • 박맹언;최인식;김진섭
    • 자원환경지질
    • /
    • 제25권3호
    • /
    • pp.225-232
    • /
    • 1992
  • The hydrothermal alteration is evaluated using multicomponent equilibrium calculations with the program CHILLER for the reactions between hydrothermal water and rhyolite at the temperature of $300^{\circ}C$ and pressure of 500 bars. The chemical-reaction model on the depositional processes of the sericitite confirms that the hydrothermal water-rock interaction(hydrothermal alteration) is the main mechanism of the sericitite formation. The principal change in the aqueous phase during the reaction is the pH increase. Overall trends for the major species are the increase in total molalities of K, Ca, $SiO_2$, Al, Mg, Fe, Na, and sulfide in solid phase with hydrothermal water-rhyolite reaction and the decrease of them in aqeous solution by precipitation of hydrothermal products. Quartz and sericite are the first minerals to form. The sequence of minerals to precipitate following them is chlorite, epidote, pyrite and microcline as water/rock ratio decreases. Although calculated results cannot duplicate the complexities of natural hydrothermal alteration, the calculation provides thermodynamic constraints on the natural process. The calculation results resemble those of experimental studies. Sericitite forms where pH decreases and water/rock ratio increases.

  • PDF

Cr(VI) removal using Fe2O3-chitosan-cherry kernel shell pyrolytic charcoal composite beads

  • Altun, Turkan;Ecevit, Huseyin
    • Environmental Engineering Research
    • /
    • 제25권3호
    • /
    • pp.426-438
    • /
    • 2020
  • In this study, cherry kernel shell pyrolytic charcoal was synthesized (CKSC) and composite beads were obtained by blending this pyrolytic charcoal with chitosan and Fe2O3 nanoparticles (Fe-C-CKSC). Cr(VI) adsorption from aqueous solutions by Fe-C-CKSC composite beads and CKSC adsorbents was studied comparatively. The effects of Cr(VI) initial concentration, adsorbent dosage, contact time, pH and temperature parameters on Cr(VI) adsorption were investigated. Adsorption reached an equilibrium point within 120 min for CKSC and Fe-C-CKSC adsorbents. The maximum Cr(VI) removal was obtained at the initial pH value of 1.56 for CKSC and 2.00 for Fe-C-CKSC. The optimum adsorbent dosage was found to be 5 g/L for CKSC and 3 g/L for Fe-C-CKSC. Based on the Langmuir model, the maximum adsorption capacities were calculated as 14.455 mg/g and 47.576 mg/g for CKSC and Fe-C-CKSC, respectively. Thermodynamic and kinetic studies were performed. As a result of adsorption kinetics calculations, adsorption was found to be consistent with the pseudo second order kinetic model. Characterization of the synthesized adsorbents was performed by SEM, BET, FTIR and elemental analysis. This study has shown that low cost adsorbents CKSC and Fe-C-CKSC can be used in Cr(VI) removal from aqueous solutions.

아미노 치환 피리딘-물 착화합물의 수소결합에 대한 DFT 연구 (DFT Studies on Hydrogen Bonding in Water Complexes of Amino-substituted Pyridine)

  • 이갑용;김옥주
    • 대한화학회지
    • /
    • 제47권2호
    • /
    • pp.96-103
    • /
    • 2003
  • 피리딘-물 착화합물을 포함한 아미노 치환 피리딘-물 착화합물의 수소결합 상호작용에너지를 조사하기 위하여 Density Functional Theory(DFT) 계산을 수행하였다. 아울러 피리딘 및 아미노 치환 피리딘 분자들의 몇가지 평형구조의 성질을 B3LYP/aug-cc-pVDZ 수준에서 구하였다. 그 결과 피리딘의 아미노 치환은 피리딘의 양성자 친화도를 증가시키고 수소결합을 안정화시킴을 알았다. 물과의 착화합물 형성에 따른 안정화 정도는 아미노기의 수와 치환 위치에 따라 변하였다.

축대칭 실린더형상 주위 부분공동 유동의 전산해석 (Numerical Analysis of Partial Cavitaing Flow Past Axisymmetric Cylinders)

  • 김봉수;이병우;박원규;정철민
    • 대한기계학회논문집B
    • /
    • 제33권2호
    • /
    • pp.69-78
    • /
    • 2009
  • Cavitating flow simulation is of practical importance for many hydraulic engineering systems, such as pump, turbine, nozzle, injector, etc. In the present work, a solver for cavitating flow has been developed and applied to simulate the flows past axisymmetric cylinders. Governing equations are the two-phase Navier-Stokes equations, comprised of continuity equation of liquid and vapor phase. The momentum equation is in the mixture phase. The solver employed an implicit, dual time, preconditioned algorithm in curvilinear coordinates. Computations were carried out for three axisymmetric cylinders: hemispherical, ogive, and caliber-0 forebody shape. Then, the present calculations were compared with experiments and other numerical results to validate the present solver. Also, the code has shown its capability to accurately simulate the re-entrant jet phenomena and ventilated cavitation. Hence, it has been found that the present numerical code has successfully accounted for cavitating flows past axisymmetric cylinders.

Fluorescence Enhancement of 7-Diethylamino-4-methylcoumarin by Noncovalent Dipolar Interactions with Cucurbiturils

  • Park, Mee Ock;Moon, Myung Gu;Kang, T.J.
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권5호
    • /
    • pp.1378-1382
    • /
    • 2013
  • We have investigated the complex forming behavior of cucurbit[6]urils(CB6) and cucurbit[7]urils(CB7) with 7-diethylamino-4-methylcoumarin(C460) in water. The electronic absorption maximum of C460 shows bathochromic shift with the addition of CB7 and fluorescence intensity is greatly increased, while CB6 has no noticeable effects on the spectroscopic properties of C460. It is noted that CB7 interacts more strongly with C460 than CB6 does. Fluorescence lifetime also significantly increased for the CB7 complex, which is attributed to reduced polarity surrounding C460 and/or C460 being in a restricted environment. The stoichiometry for the complex formation determined from the fluorescence titration measurement indicates that 2:1 complex in which two CB7 molecules bind to C460 is formed. Thus, two step equilibrium processes are suggested for the complex formation and the binding constants are estimated. The semi-empirical electronic structures calculations indicate that C460 is not included in the CB7 cavity but interacts noncovalently with the portal carbonyls of CB7.

Flexural ductility of reinforced HSC beams strengthened with CFRP sheets

  • Hashemi, Seyed Hamid;Maghsoudi, Ali Akbar;Rahgozar, Reza
    • Structural Engineering and Mechanics
    • /
    • 제30권4호
    • /
    • pp.403-426
    • /
    • 2008
  • Externally bonding fiber reinforced polymer (FRP) sheets with an epoxy resin is an effective technique for strengthening and repairing reinforced concrete (RC) beams under flexural loads. Their resistance to electro-chemical corrosion, high strength-to-weight ratio, larger creep strain, fatigue resistance, and nonmagnetic and nonmetallic properties make carbon fiber reinforced polymer (CFRP) composites a viable alternative to bonding of steel plates in repair and rehabilitation of RC structures. The objective of this investigation is to study the effectiveness of CFRP sheets on ductility and flexural strength of reinforced high strength concrete (HSC) beams. This objective is achieved by conducting the following tasks: (1) flexural four-point testing of reinforced HSC beams strengthened with different amounts of cross-ply of CFRP sheets with different amount of tensile reinforcement up to failure; (2) calculating the effect of different layouts of CFRP sheets on the flexural strength; (3) Evaluating the failure modes; (4) developing an analytical procedure based on compatibility of deformations and equilibrium of forces to calculate the flexural strength of reinforced HSC beams strengthened with CFRP composites; and (5) comparing the analytical calculations with experimental results.

First-principles study of the initial-stage oxidation of Si(1110)-(7x7)

  • Lee, Sung-Hoon;Kang, Myung-Ho
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2000년도 제18회 학술발표회 논문개요집
    • /
    • pp.147-147
    • /
    • 2000
  • Chemisorption of oxygen molecules on the Si(111)-(7x7) surface has been studied extensively as a model for the initial-stage oxidation of the surface. The basic step to the surface oxidation is the dissociation of the adsorbed O2 molecules, but the dissociation procedure and the atomic structure of the reaction products still remains as a subject of debates. We present here density-functional theory calculations on the initial-stage oxidation states of the Si adatom site for all possible dissociation configurations that can be generated by multiple O2 reactions. We determine the equilibrium structures and analyze their electronic and vibrational properties in comparison with measured UPS, XPS, and EELS spectra. The O(ad) atom bonded on top of the Si adatom is always less stable than the O(ins) atom inserted into one of the adatom backbonds. Our electronic and vibrational analysis demonstrates further that the O(ad) and O(ins) atoms account well for the metastable and stable features in previous experiments, respectively. Moreover, the calculated decay pathways of the metastable structures and the comparison of the calculated O ls core-level shifts with XPS data provides a convincing argument in unambiguously identifying the experimental metastable and stable structures, thereby making it possible to build a correct atomic-scale picture of the initial-stage oxidation process on this surface.

  • PDF