Journal of the Korean Chemical Society 2003, Vol. 47, No. 2 Printed in the Republic of Korea

아미노 치환 피리딘-물 착화합물의 수소결합에 대한 DFT 연구

이갑용* · 김옥주

대구가톨릭대학교 자연대학 화학과 (2003. 3. 18 접수)

DFT Studies on Hydrogen Bonding in Water Complexes of Amino-substituted Pyridine

Gab-Yong Lee* and Ok-Ju Kim

Department of Chemistry, Catholic University of Daegu, Gyongsan 712-702, Korea (Received March 18, 2003)

요 약. 피러딘-물 착화합물을 포함한 아미노 치환 피러딘-물 착화합물의 수소결합 상호작용에너지를 조사하기 위 하여 Density Functional Theory(DFT) 계산을 수행하였다. 아울리 피러딘 및 아미노 치환 피러딘 분자들의 및가지 평 형구조의 성질을 B3LYP aug-cc-pVDZ 수준에서 구하였다. 그 결과 피러딘의 아미노 치환은 피러딘의 양성자 친화도 를 증가시키고 수소결합을 안정화시킴을 알았다. 물과의 착화합물 형성에 따른 안정화 정도는 아미노기의 수와 치환 위치에 따라 변하였다.

주제어: 아미노 치환 피리던 불 착화함물, 수소결함, DFT 계산

ABSTRACT. Density Functional Theory(DFT) calculations are performed to estimate the hydrogen bonding interaction energies in pyridine-water and amino-substituted pyridine-water complexes. Some equilibrium properties are also obtained for these complexes at B3LYP aug-cc-pVDZ level. It is shown that the amino substitution increases the proton affinity of pyridine and stabilizes the hydrogen bond. The degree of stabilization upon formation of the complex varies with the number and the position of the amino groups.

Keywords: Amino-Substituted Pyridine-Water Complex, Hydrogen Bond, DFT Calculation

여러 메틸 치환 피리닌과 불의 액체 혼합불이 실험적 으로 광범위하게 오늘날까지 연구되어져 오고 있으며.¹⁸ 이론적인 관점에서도 흥미로운 연구의 대상이 되고 있 다. 즉, 피리던 고리에 결합하는 메틸기의 위치 및 치환 메틸기의 수에 따라서 이들 화합물들의 물과의 혼합성 질에 있어서 큰 변화를 나타낸다. 이와 같은 성질의 변 화를 설명할 수 있는 가장 중요한 인자 중의 하나는 수 소결합의 세기이다.

한편 수소결함은 많은 화학적, 생물학적 과정에서 중 요한 역할을 한다. 수소결함은 수용액 환경이 분자구조 에 미치는 영향을 지배할 뿐 아니라 단백적. 핵산 같은 생화학물질의 구조와 기능을 결정하는 중요한 역할을 한다.⁹¹⁰ [1리므로 생체계에 미치는 12들의 영향을 합리 적으로 정량화하기 위해서는 수소결합계의 기하학적 구 조와 에너지를 정확히 결정하는 것이 매우 중요하다. 실험적으로 수소결합 착화합물의 기하학적 구조와 결 합력의 제기를 측정하는 것은 어렵기 때문에 양자이론 적인 계산이 널리 사용된다. 최근까지 수소결합에 대한 양자화학적인 연구의 주류는 상대적으로 작은 basis set 볼 사용한 Hatree-Fock(HF) 수준에서의 낮은 수준의 전자적 구조 계산으로 이루어져 왔다. 그러나 이와 같 은 낮은 수준의 계산은 합리적인 수소결합 구조 및 세기를 예측하는데 적당하지 못하였다. ""

최근에는 Density Functional Theory(DFT). 특히 B3LYP 방법 ^E이 몇 몇 수소결합착화합물과 이온착화합물의 기 하학적 구조와 안정화에너지를 합리적으로 잘 예측해 중을 보이고 있다.¹⁴⁴⁹ 이와 함께 O-H…비결합적자쌍 형태의 많은 수소결함 착화합물에 대해 DFT방법이 에 너지 및 구조적 성질을 합리적으로 보여 주는 것으로 보고되었다.³⁶⁵⁵

한편 Niu 등³⁰은 생물학적으로 관심 있는 몇 가지 수 소결합 착화합물에 대해 *ab initio* 양자화학적 방법으로 기하학적 구조와 상호에너지를 계산하였다.

이상에서 본 바와 같이 수소결합 착화합불에 대한 이 론적 연구가 많이 수행되었으나 피리던에 있어서 치환 기의 성질에 따른 피리던의 수소결합에 관한 연구는 체 계정으로 이루어지지 않았다. 따라서 본 연구에서는 치 환기의 성질 에 따른 수소결합에 미치는 영향을 알아보 기 위한 첫 번째 연구로 Fig. 1에 나타낸 바와 같이 전 자를 주는 힘이 매우 큰 아미노기를 여러 위치에 치환 시킨 여러 치환 아미노 피리던과 불의 결합에서 수소결 합에 미치는 치환기의 영향을 조사해 보고자 한다. 이 를 위해 Fig. 1의 아미노 치환 피리던 단량체. 그리고 피리던-물을 포함한 여러 아미노 치환 피리던-물 착화 합물에 대해 DFT 계산을 수행하였다.

계 산

Fig. 1에서 나타낸 것과 같이 피리던 모체와 적자를 주는 기인 아미노기를 오르토. 메타. 파라 위치에 치환 시킨 아미노 치환 피리던. 그리고 2와 6 및 3과 5 위치 에 두 개의 아미노기를 치환시킨 디아미노피리던에 대

Fig. 1. Investigated amino-substituted pyridine molecules. The Py. APy. and DAPy represent pyridine, aminopyridine, and diaminopyridine, respectively. 해 최적화 된 구조와 에너지, 쌍극자능률, 원자 전히를 계산하였다. 이와 더불어 치환 피리닌 및 피리닌 고리 내 질소 원자에 양성자화 된 화합물에 대해 구한 에너 지로부터 양성자 친화도를 계산하였다. 그리고 이들 피 리딘 및 치환 피리딘들에 각각 물이 결합된 착화합물의 가능한 구조에 대해 결합에너지를 조사하기 위해 DFT 방법으로 계산을 수행하였다.

본 연구에서 택한 모든 화합물에 대해서 먼저 Hyperchem Package²⁹를 이용하여 AMI 방법³⁰으로 구조를 최적화 시킨 다음, 최적화 된 구조 파라미터를 사용하여 B3LYP/ aug-cc-pVDZ level에서 DFT방법으로 Gaussian94 프로 그램³¹을 사용하여 다시 구조를 최적화 시켰다.

모든 계산은 Pentium III 및 IBM RS6000 workstation 으로 수행하였으며, 최적화 된 구조에 대해 진동주과수 를 계산하여 Hessian 고유값이 모두 양수이며 진동주과 수가 모두 양의 값을 가짐으로써 최적화 된 구조가 true minima에 해당하는 구조임을 확인하였다.

아미노 치환 피리된-물 착화합물들의 회합에너지는 $E(AB)+E(A)_{mon}-E(B)_{mon}]= 구하였다. 여기서 <math>E(AB)+=$ 착화합물의 최적화된 구조의 에너지이며, $E(A)_{mon}$ 및 $E(B)_{mon}=$ 치환 피리던과 물분자에 대해 각각 최적화 된 구조의 에너지이다.

계산된 착화합물의 최합에너지는 영점에너지를 사용 하여 보정하였으며, counterpoise technique¹²을 사용하여 계산된 basis set superposition error(BSSE)로 다시 보 정하였다.

결과 및 고찰

피리던과 아미노 치환 피리던의 기하학적 구조 및 성질 *Fig.* 2에 나타낸 피리던과, 여러 아미노 치환 피리닌

가정, 2개 기가는 기가는 기가는지, 가지 가지고 가는 기가는 분자들의 구조에 대해 B3LYP/aug-cc-pVDZ level에서 구조를 최저화시킨 결과 피리던 구조는 모든 원자들의

Fig. 2. The molecular structure and numbering of pyridine for calculation.

Parameter	Py^a	2-APy	3-APy	4-APv	2.6-DAPy	3.5-DAPy
$r(N_1-C_2)$	1.340(1.338)	1.342	1.334	1.342	1.342	1.334
$\mathbf{r}(\mathbf{C}_2 - \mathbf{C}_3)$	1.399(1.394)	1.413	1.410	1.393	1.408	1.409
$\mathbf{r}(\mathbf{C}_3 - \mathbf{C}_4)$	1.396(1.392)	1.388	1.403	1.407	1.393	1.400
$r(C_4 - C_5)$		1.402	1.394	1.407		
$\mathbf{r}(\mathbf{C}_{5}-\mathbf{C}_{6})$		1.394	1.398	1.393		
$r(N_1-C_6)$		1.340	1.340	1.342		
$r(C-N(NH_0))$		1.385	1.396	1.385	1.386	1.397
$\leq N_1 C_2 C_3$	123.6(123.8)	122.6	124.0	124.5	123.0	122.9
$\angle C_2 C_3 C_4$	118.5(118.5)	118.4	117.2	119.0	117.5	117.9
$\angle C_5C_4C_5$	118.5(118.4)	119.5	118.9	117.0	120.5	119.4
$\angle C_4C_5C_6$		117.6	119.2	119.0		
$\angle N_1C_6C_5$		124.0	122.5	124.5		
$\angle C_6 N_1 C_2$	117.3(116.9)	118.0	118.2	116.0	118.6	119.1
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		116.2			115.8	
$\angle C_2C_3 N(NH_2)$			120.9			120.7
$\angle C_3 C_4 N(NH_2)$				121.5		
$\angle N_1C_2 \operatorname{NH}(\operatorname{NH}_2)$		-16.4			-17.0	
		-157.0			-157.0	
$\angle C_2C_3$ NH(NH ₂)			-22.7			-22.4
			-157.2			-156.5
∠ C ₃ C ₄ NH(NH ₂)				-20.8		
				-162.0		

Table 1. Optimized bond lengths(Å) and angles(degree) for the pyridine and amino-substituted pyridines

'Values in parentheses are taken from experimental results.33

비틀립각이 0° 및 180°로 최적화되어 평면으로 나타났 다. 그러나 아미노기가 치환된 경우에는 아미노기 두 수소의 비틀립각이 평면에서 약간씩 어긋난 구조로 최 적화되었으며, 이를 포함하여 본 연구에서 택한 모든 아미노 치환 피리던들에 대해 최적화 된 결합길이와 결 합각 및 비불림각을 Table 1에 요약하였다.

Table 1에서 알 수 있듯이 실혂값이 알려진 피리딘의 구조를 본 연구의 계산을 통해 최적화시킨 구조와 비교 해 볼 때 결합길이는 0.005Å 이내에서, 결합각은 0.4° 이내에서 아주 잘 일치함을 알 수 있다.

치환 피리닌의 경우 치환기의 영향에 의해 피리던 고 리 내 전자들의 재배열로 인하여 모든 치환 피리딘에서 치환기가 결합된 고려 내 탄소 원자의 양쪽 결합들이 피리던 모체에서보다 약간씩 더 길어졌으며, 따라서 치 환기의 위치에 따라 폐리던 고리 내 결합길이가 조금씩 변함을 알 수 있다.

피리던의 결합각을 살펴보면, 고리 내의 질소 원자의 영향으로 ∠N₁C₂C₃와 ∠N₁C₆C₅의 각이 다른 각보다 상 대적으로 크게 나왔으며, 아미노기가 치환됨에 따라 치 환 위치의 고리 내 결합각들은 피리던 모체에 비해 0.6% 1.5% 정도 작게 나타났다.

한편, 본 연구에서 택한 피리던 및 아미노 치환 피리 딘(amino-substituted pyridine, asPy)의 유도상호작용 및 징전기전위 에니지에 중요한 기여를 하는 쌍극자능률 과 피리던 고리 내 질소 원자의 net atomic charge를 구 하였다. 이와 함께 이들 화합물의 양성자 친화도를 구 하였으며, 이들 모든 결과들을 *Table* 2에 나타내었다.

Table 2에서 보듯이 피리던의 쌍극자능률은 2.281) 로 계산되었으며 실험값(2.22 D)^M과 거의 일치함을 알 수 있다. 그러나 아미노기의 치환 위치에 따른 아미노 치환 피리던의 쌍극자능률을 비교할 수 있는 실험적. 이론적 연구는 없다. Wang 등³⁵은 조그만 분자들에 대 해 BALYP aug-ce-pVDZ level에서 쌍극자능률을 계산 한 결과 실험치와 0.1 D 이내에서 잘 일치함을 보였으 며. Papai 등⁴⁶은 본 연구에서와 같은 방법으로 계산한 메틸 치환 피리던의 경우에 2.6-디메틸피리던 -2-메틸피 리던 -피리던 -3-메틸피리던 -3.5-디메틸피리던 -4-메틸피 리던 순으로 실험치와 경향성이 정확히 일치함을 보였다.

Table 2. Some equilibrium properties of pyridine and aminosubstituted pyridine molecules obtained from B3LYP/aug-ccpVDZ calculations^a

	μ	Ø.	PΛ
Py	2.28	-0.488	221.7
2-APy	1.97	-0.545	226.5
З-АРу	3.25	-0.470	228.5
4-APy	3.98	-0.536	234.7
2.6-DAPy	1.59	-0.578	229.0
3.5-DAPy	3.36	-0.458	234.1

*Notation: μ -dipole moment(in D): Q_N -net atomic charge(in e⁻) on N evaluated from NBO analysis; PA-proton affinity(in keal mol).

따라서 본 연구에서는 메틸기와 같은 전자를 주는 기 인 아미노를 치환시킨 아미노 치환 피리던에 대해 같은 basis sct을 사용하여 계산하였으며, 그 결과 Table 2에 서 보듯이 메틸 치환 피리던의 경향성과 정확히 일치함 을 알 수 있다.

다음으로 Table 2에 Natural Bond Orbital(NBO) analysis 방법¹으로 구한 질소 원자의 net charge(Qx) 값을 나 타내었다. 치환기의 유도효과에 의한 피리던 질소 원 자 주위의 전하분포의 변화는 오르토 및 파라 위치에 치환 될 때가 메타 위치에 치환될 때보다 크다.⁴⁶ 14 결 파 Table 2에서 알 수 있듯이 아미노기가 오르토, 파 라 위치에 치환된 2-APy, 4-APy의 net charge 값은 각 각 -0.545, 및 -0.536으로 피리던의 net charge인 -0.488보다 음전위 값이 증가하였음을 알 수 있으며, 메타 위치에 치환된 3-APy의 net charge는 -0.470으 로 약간 감소하였음을 알 수 있다. 이와 같은 효과는 두 개의 아미노기가 치환된 2.6-DAPy과 3.5-DAPy 분 자의 경우 각각 -0.578과 -0.458으로써 조금 더 크게 나타났다.

한편 아미노 치환 피리던 물 착화합물에서 분자 간 정전기적 상호작용의 세기는 O-H…N 형태의 수소결합 에서 양성자 반개로 작용하는 피리던 고리의 질소 원자 주위의 전자밀도와 직접 관련이 있다. 본 연구에서 택 한 아미노기가 피리던에 치환될 경우 아미노기의 전자 주개 효과로 인하여 질소 원자 주위에 있는 전자 밀도 가 증가됨으로 양성자와 쉽게 수소결합을 이루어 양성 자 화된 형태가 안정하게 된다.

피리던 고리의 질소 원자가 양성자를 받아들이는 농 력을 좀 더 구체적으로 알아보기 위해 양성자 친화도를 구하였으며, 피리던 및 여러 아미노 치환 피리던들의 양성자 친화도를 Table 2에 나타내었다. Table 2에서 알 수 있듯이 본 연구에서 택한 전자를 주는 기인 아미노 기가 치환될 때 양성자 친화도는 피리던 모체보다 모두 증가함을 알 수 있으며, 이 결과는 메틸기가 치환된 피 리던들의 양성자 친화도가 증가되는 경향[%]과 일치한다.

아미노 치환 피리딘 - 물 착화합물

피리닌 물 착화합불은 실온에서 용액내에 존재하는 것으로 알려져 있다.³⁸⁻⁴⁹ 이 착화합물에서 피리던 질소 가 양성자 수용체로 착용하고 불 분자의 수소가 양성자 주개로 작용하여 서로 수소 결합이 가능하게 됩으로써 결합이 용이하게 된다. 이 착화합물의 실험적 구조는 밝혀져 있지 않지만. 여러 이론적 제산^{22,41-13}에서 가장 안정한 구조는 O-H…N 수소결합이 기의 직선이며 두 분자 면이 서로 수직으로 배향된 구조로 밝혀졌다. 따 라서 본 연구에서 택한 모든 아미노 치환 피리던 물 (asPy-W) 착화합물에 대해서도 피리던 질소 원자의 비 공유 전자쌍과 물 분자의 수소 원자가 결합하여 두 분 자가 서로 수직으로 배향된 구조를 택하여 제산하였다.

Fig. 3에 피리닌-불(Py-W) 착화함불을 포함하여, 본 연구에서 백한 아미노피리닌-불(APy-W) 착화합불들과 디아미노피리닌-불(DAPy-W) 착화합불들의 최적화 된 구조를 나타내었다.

Fig. 3에서 보는마와 같이 피리던-물 착화합물의 최 적화 된 구조에서 피리던과 물 문자 사이의 N…Ⅱ 결 합길이는 1.918Å로 나타났으며, 직선에서 약간 벗어난 형태(∠CNH=177.2°, ∠NHO=176.9°)로 수소결함이 이 루어지는 것으로 나타났다.

나머지 분자 내 대부분의 기하구조는 거의 변하지 않 았으나. 착화합물이 형성됨에 따라 양성자 주개 ()-H 결 합길이는 약 0.015Å 증가하였다. 이와 같은 결합길이 의 증가는 불 이량체 내 O-H 결합길이의 증가⁴에 비 해 거의 두 배 가까운 값으로써. 이는 피리던 불 착화 합불이 불-불 착화합불 보다 상호작용이 더 콤을 의미한다.

물 분자 내의 다른 O-H 결합간이와, 물 분자의 결합 각은 거의 변하지 않았으며, 피리던의 내부 파라미터들 의 변화도 결합간이는 0.002Å이내로 그리고 결합가은 0.6° 이네로 매우 적게 나타났다.

한편 모든 asPy-W 착화합물의 N…H 결합길이가 Py-W 착화합물에서 보다 짧게 나타났으며, 특히 2-APy-W, 4-APy-W, 2.6-DAPy-W에서 더 많이 짧아졌다. 반

Fig. 3. Equilibrium structures of the APy-W complexes with selected B3LYP/aug-cc-pVDZ optimized geometrical parameters.

W. 2.6-DAPy-W에서 반대로 더 크게 길어졌음을 알 수 있다. 이와 같은 결과는 오르토 및 파라 위치에 치환기

면에 피리던 질소와 수소결합하는, 물 분자 내 수소 원 자와 산소 원자 사이의 결합길이는 2-APy-W, 4-APy-

	Total E	ΔE^{a}	E _{BSSE}	ΔZPE	$\Delta E_{corr}{}^{b}$		
H ₂ O	-76.44464						
Py	-248.31416						
Py W	-324.76921	6.53	0.26	1.86	4.41		
2-APy	-303.69336						
2-APy-W	-380.15193	8.74	0.02	2.16	6.56		
3-APy	-303.68313						
3-APy-W	-380.13888	6.97	0.25	1.88	4.84		
4-ΛPy	-303.68794						
4-ΛPy-W	-380.14429	7.35	0.22	1.88	5.25		
2,6-DAPy	-359.07228						
2,6-DAPy-W	-435.53027	8.38	0.06	2.22	6.10		
3,5-DAPy	-359.05216						
3,5-DAPy-W	-435.50842	7.29	0.22	1.88	5.19		

Table 3. Total energies(a.u.) and association energies(keal mol) for the Pv-W, APv-W, and DAPv-W complexes

^aAssociation energy calculated as $\Delta E = -(E_{tot}^{asPy-W} + E_{tot}^{asPy} + E_{tot}^{W})$

^bAssociation energy corrected for BSSE and Δ ZPE

가 결합할 때가 메타 위치에 결합할 경우보다 피리닌과 물 사이의 상호작용이 더 높을 의미한다.

피리던 고리에 대한 양성자 주개인 () H 결합의 배향을 결정짓는 / CNH와 / NHO를 살피보면 2-APy-W 착 화합물의 경우 각각 168.8°와 156.6° 그리고 2.6-DAPy-W 착화합물의 경우 각각 170.6°와 162.7°로서 직선성 으로부터 가장 많이 벗어남을 알 수 있다. 이와 같은 결 과는 오르토 위치의 아미노기가, 회합된 물 분자와 가 장 가까이 위치함으로써 아미노기의 한 수소 원자와 물 분자의 산소 원자 사이의 여분의 상호적용이 일어나기 때문으로 생각된다.

피리닌과 아미노 치환 피리닌의 수소결합 세기를 알 아보기 위해 계산된 착화함물의 회합에니지를 전 에니 지와 함께 Table 3에 나타내었다.

Table 3에서 피리던-물 착화합물의 회합에너지는 6.53 kcal/mol로 계산되었으며, 영점에너지 및 BSSE를 보정한 회합에너지는 4.41 kcal/mol로 나타났다. 이와 같은 결과는 페놀-물 착화합물에서의 보정된 회합에너 지가 3.20 kcal mol업을 보고한 Alm 등*의 결과와 비 교할 때 피리던이 페놀에 비해 물과의 회합세기가 더 금을 의미한다.

한편 피리던 물 착화합물의 회합에너지보다 아미노기 가 치환된 치환 피리던 착화합물의 회합에너지가 모두 더 큼을 알 수 있다. 이와 같은 결과는 영점에너지및 BSSE가 보정되지 않은 결과에서나 보정된 결과에서 모 두 동일하게 나타났으며 아미노기의 전자주개 성질 때

2003, Fol. 47, No. 2

문으로 생각된다. 아울리. 오르토 및 파라 위치에 치환 된 2-APy-W. 4-APy-W 그리고 2.6-DAPy-W 착화합물 이 메타 위치에 치환된 착화합물 보다 회합에너지가 상 대적으로 더 크게 나타났음을 알 수 있다. 그러나 이들 분자들의 회합에너지는 양성자 친화도에서 예상되는 순 서와는 정확히 일치하지 않는다.

Table 3에서 파라 위치에 치환된 4-APy-W 착화함불 의 영점에너지를 보정한 회합에너지는 5.47 keal mol으 로서 피리딘-물 착화합물의 회합에너지(4.67 keal/mol) 에 비해 0.80 keal/mol 증가하였으며, 이를 파라-아미노 페놀-불 착화합물의 회합에너지(5.80 keal mol)가 페놀-불 착화합물의 회합에너지(5.46 keal/mol)보다 0.34 keal/ mol 증가한 결과*5와 비교해볼 때 본 연구에서 택한 피 리딘-물 착화합물이 페놐-물 착화합물보다 치환기 효과 가 더 뚜렷하게 나타납을 알 수 있다.

Fig. 4에 최합에너지와 양성자 친화도 값 사이의 관 계를 도시하였다. 직선식은 ΔΕ=0.064PA-9.754이며, 상 관계수가 0.9997으로서 매우 높은 상관성을 나타내었다.

Fig. 4에서 오르토 위치에 치환된 2-APy 및 2.6-DAPy 의 경우 직선성으로부터 벗어나. 양성자 친화도로부터 예상되는 회합에너지보다 더 크게 나타났다. 이 결과는 파라 치환의 경우 치환기 효과는 거의 대부분 유도효과 에 의한 것이나 오르토 치환의 경우에는 유도효과 외에. 앞에서 언급한 바와 같이 아미노 기와 물 분자가 가까 이 위치함으로서 수소결함 위치에서의 큰 구조적 변화 가 일어나 치환된 아미노 수소 원자와 물 분자의 산소

Fig. 4. Correlation between association energies(ΔE) and proton affinities(PA). A regression line shown filled circles with slope-0.064, r=0.9997.

원자 사이의 기리가 2.114Å 정도로 가까워짐에 따라 아미노 기의 수소 원자와 불 분자의 산소 원자 사이의 상호작용이 더해지기 때문으로 생각된다.

결 론

피리닌과. 전자를 주는 기인 아메노기를 치환시킨 치 환 피리닌 분자들에 대해 DFT 방법으로 구조를 최적 화 시키고, 최적화 된 구조에 대해 쌍극자능률, net atomic charge, 양성자 친화도를 구하였다.

그 결과 아미노기 치환이 치환위치를 제외한 피리던 고리내 구조변화에는 크게 영향을 미치지 않은 것으로 나타났으며, 쌍극자능률은 메타 및 파라 위치에 치환될 때가, 그리고 피리던 질소원자의 net charge는 오르토 및 파라 위치에 치환될 때가 각각 오르토 및 메타 위치 에 치환될 때보다 크게 나타났다.

한편 전자를 미는 힘이 큰 아미노기가 치환됨에 따라 양성자 친화도는 피리닌 모체 보다 모두 증가하였으며, 아울러 피리던 볼 그리고 아미노 치환 피리던 불 착화 합물의 수소결합 상호작용에너지를 알아보기 위해 계 산된 회합에너지는 오르토 및 파라 위치에 치환된 2-APY-W, 4-APY-W 및 2.6-DAPY-W 착화합물이 메타 위 치에 치환된 3-APY-W 및 3.5-DAPY-W 착화합물보다 더 크게 증가함을 알았다.

본 연구는 2003학년도 대구가톨릭대학교 일반연구비 지원에 의한 것임.

인 용 문 헌

- 1. Andon, R. J. L.; Cox, J. D. J. Chem. Soc. 1952, 4601,
- 2. Cox, J. D. J. Chem. Soc. 1952, 4606.
- Abe, J.; Nakanishi, K.; Touhara, H. J. Chem. Thermodyn. 1978, 10, 483.
- Marczak, W.; Giera, E. J. Chem. Thermodyn. 1988, 30, 241, and references cited therein.
- Garland, C. W.: Nishigaki, K. J. Chem. Phys. 1976, 65, 5298.
- Narayanan, T.: Prafulla, B. V.: Kumar, A.: Gopal, E. S. R. Ben Bunsen-Ges. Phy. Chem. 1991, 95, 12.
- 7. Schneider, G. Z. Phys. Chem. Neue Folge. 1963, 37, 333.
- Almasy, L.; Cser, L.; Janeso, G. *Physica B*, 2000, 276-278, 446.
- Jeffrey, G. A. An Introduction to Hydrogen Bonding: Oxford University Press; New York, 1997.
- Scheiner, S. Hydrogen Bonding: Oxford University Press: New York. 1997.
- 11. Halgren, T. A. J. Comput. Chem. 1996, 17, 520.
- Tsuzuki, S.: Uchimaru, T.: Matsumura, K.: Mikami, M.: Tanabe, K. J. Chem. Phys. **1999**, 110, 11906.
- 13. Becke, A. D. J Chem. Phys. 1993, 98, 1372.
- 14. Rablen, P. R.; Lockman, J. W.; Jorgensen, W. L. J. Phys. Chem. A 1998, 102, 3782.
- Del Bene, J. E.; Person, W. B.; Szczepaniak, K. J. Phys. Chem. 1995, 99, 10705.
- Elstner, M.; Hobza, P.; Franenheim, T.; Suhai, S.; Kaxiras, E. J. Chem. Phys. 2001, 114, 5149.
- Kieninger, M.; Suhai, S. J. Comput. Chem. 1996, 117, 1508.
- I.ozynski, M.: Rusinska-Roszak, D. J. Phys. Chem. A 1998, 102, 2899.
- 19. Novoa, J. J.: Sosa, C. J. Phys. Chem. 1995, 99, 15837.
- Adamo, C.; Barone, V. In Recent Advances in Density Functional Methods: Chong, D. P., Ed.; World Scientific: Singapore, 1997: Part III.
- Guo, H.: Sirois, S.: Proynov, E. I.: Salahub, D. R. In Theoretical Treatments of Hydrogen Bonding; Hadzi, D., Ed.; Wiley: Chichester, 1997.
- 22. Lozynski, M.: Rusiuska-Roszak, D.: Maek, H. G. J. Phys. Chem. A 1998, 102, 2899.
- Chandra, A. K.: Nguyen, M. T.: Zeegers-Huyskens, T. J. Phys. Chem. A 1998, 102, 6010.
- 24. Mo. O.: Janez, M. J. Phys. Chem. A 1998, 102, 8174.
- Gu, J.: Leszczynski, J. J. Phys. Chem. A 1998, 103, 2744.
- 26. Niu, H.: Alexander, D. Mackerell, Jr. J. Phys. Chem. A 2002, 106, 7820.
- 27. Kohn, W.; Sham, L. J Phys. Rev. 1965, A140, 1133.
- 28. (a) Atkins, P. W.; Friedman, R. S. Molecular Qunaturm

Mechanics, Oxford Univ. Press: New York. **1997**. (b) Sahn, V., Density Functional Theory III., Springer: New York, **1996**.

- Ostlund, N. HyperChem. Autodesk, Inc., Sausalito, CA, 1993.
- Dewar, M. J. S.; Zoebish, E. J.; Healy, E. F.; Stewart, J. J. P. J. Am. Chem. Soc. 1985, 107, 3902.
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A. Montgomery, J. A.; Raghavachari, H.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, Y.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, F.; Stewart, J. P; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94, Gaussian, Inc.; Pittsburgh PA, **1995**.
- 32. Boys, S. F., Bernardi, F. Mol. Phys. 1970, 19, 553.
- Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. E.; Stewart, J. J. P. J. Am. Chem. Soc. 1985, 108, 3902.
- 34. Sorensen, G. O.; Mahler, L.: Rastrup-Andersen, N. J.

Mol. Struct. 1974, 20, 119.

- Wang, J.; Johnson, B. G.; Boyd, R. J.; Eriksson, L. K. J. Phys. Chem. **1996**, 100, 6317.
- 36. Papai I.: Gabor, J. J. Phys. Chem. A 2000, 104, 2132.
- Reed, A. E.; Curtiss, L. A.: Weinhold, F. Chem Rev. 1988, 99, 899.
- Takahashi, H.; Mamola, K.; Plyler, E. K. J. Mol. Spectrosc. 1966, 21, 217.
- Kasende, O.; Zeegers-Huyskens, Th. Spectrosc. Lett. 1980, 13, 493.
- (a) Zoidis, E.; Yarwood, J.; Danten, Y.; Besnard, M. Mol. Phys. **1995**, 85, 373, (b) Zoidis, E.; Yarwood, J.; Danten, Y.; Besnard, M. Mol. Phys. **1995**, 85, 385.
- 41. Samanta, U.; Chakrabarti, P.; Chandrasekhar, J. J. Phys. Chem. A 1998, 102, 8964.
- 42. Del Bene, J. E. J. Am. Chem. Soc, 1975, 97, 5330.
- 43. Alagona, G.; Ghio, C.; Nagy, P.J. Mol. Struct. (THEOCTHEM), 1989, 187, 219.
- 44. Kim. K.; Jordan, K. D. J. Phys. Chem. 1994, 98, 10089.
- 45. Ahn. D. S.: Park, S. W.; Lee, S.: Kim, B. J. Phys. Chem. A. 2003, 107, 131.