In detection of a scene change of the moving pictures which has massive information capacity, the temporal sampling method has faster searching speed than the sequential searching method for the whole moving pictures, yet employed searching algorithm and detection interval greatly affect searching time and searching precision. In this study, the whole moving pictures were primarily retrieved by the temporal sampling method. When there exist a scene change within the sampling interval, we suggested a fast searching algorithm using binary searching and derived an equation formula to determine optimal primary retrieval which can minimize computation, and showed the result of the experiment on MPEG moving pictures. The result of the experiment shows that the searching speed of the suggested algorithm is maximum 13 times faster than the one of he sequential searching method.
In this study, a new technique for atmospheric transmittance estimated from ALOS PRISM data is developed. It is based on satellite's observing radiances of different view angles and assumes that the cause of difference in radiances is the different view angles. The ALOS PRISM has three independent optical systems for viewing forward and backward and producing a stereoscopic image along the satellite's track. This stereo pair data can be used to estimate the transmittance according to the radiative transfer theory. This derived transmittance will be validated by the AERONET data and compared with the MODTRAN4 simulation results. Results show that the higher the land cover albedo, the better the derived transmittance compared to the AERONET data. Besides, this technique also shows the transmittance retrieval will be underestimated for the low land cover albedo.
본 논문은 한글로 입력된 질의어를 이용하여 웹상의 MathML (Mathematical Markup Language) 수학식을 검색하는 시스템을 제안한다. 웹상의 수학식은 과거 이미지를 이용하여 표현되는 경우가 많았지만, 현재는 대부분 MathML과 같은 수학식 표현 마크업 언어로 작성되고 있다. 그러나 이러한 수학식을 검색하기 위해서는 해당 언어를 알고 있거나 수식 입력 툴을 이용해야 하는 경우가 대부분이기 때문에, 일반 사용자들이 수학식 검색을 하는 데에는 제약점이 따랐다. 본 연구에서는 사용자들이 전통적인 검색 방법을 이용하여 특정 마크업 언어가 아닌 일반 평문으로 작성된 질의어를 입력하여 수학식을 검색 가능 하도록 하기 위해, 평문 질의어를 MathML 표현으로 변환시키는 방법을 사용한다. 질의어로 입력될 수 있는 다양한 수학식 표현을 미리 구축한 사전을 이용하여 MathML 표현으로 변환하는 간결한 기법만으로도 MRR 0.495 의 높은 성능을 얻을 수 있었다.
본 논문은 두 가지 주제에 대해 연구한다. 첫 번째는 수학식 검색에 대한 것이다. 웹에는 양질의 수학식 데이터가 마크업 언어 형태로 저장되어 있으며 이를 활용하기 위한 연구들이 활발히 진행되고 있다. 본 연구에서는 MathML (Mathematical Markup Language)로 저장된 수학식 데이터를 일반 질의어를 이용하여 검색한다. 두 번째 주제는 토픽 모델(topic model)로 검색 성능을 향상시키는 방법에 대한 것이다. 먼저 수학식 데이터를 일반 자연어 문장으로 변환한 후 Indri 시스템을 이용하여 검색을 수행하고, 토픽 모델을 이용하여 미리 산출된 스코어를 적용하여 검색 순위를 재랭킹한 결과, MRR 기준 평균 5%의 성능을 향상시킬 수 있었다.
Differential phase contrast (DPC) microscopy, a central quantitative phase imaging (QPI) technique in cell biology, facilitates label-free, real-time monitoring of intrinsic optical phase variations in biological samples. The existing DPC imaging theory, while important for QPI, is grounded in paraxial diffraction theory. However, this theory lacks accuracy when applied to high numerical aperture (NA) systems that are vital for high-resolution cellular studies. To tackle this limitation, we have, for the first time, formulated a nonparaxial DPC imaging equation with a transmission cross-coefficient (TCC) for high NA DPC microscopy. Our theoretical framework incorporates the apodization of the high NA objective lens, nonparaxial light propagation, and the angular distribution of source intensity or detector sensitivity. Thus, our TCC model deviates significantly from traditional paraxial TCCs, influenced by both NA and the angular variation of illumination or detection. Our nonparaxial imaging theory could enhance phase retrieval accuracy in QPI based on high NA DPC imaging.
European Space Agency's Sentinel-1 has an improved spatial and temporal resolution, as compared to previous satellite data such as Envisat Advanced SAR (ASAR) or Advanced Scatterometer (ASCAT). Thus, the assumption used for low-resolution retrieval algorithms used by ENVISAT ASAR or ASCAT is not applicable to Sentinel-1, because a higher degree of land surface heterogeneity should be considered for retrieval. The assumption of homogeneity over land surface is not valid any more. In this study, considering that soil roughness is one of the key parameters sensitive to soil moisture retrievals, various approaches are discussed. First, soil roughness is spatially inverted from Sentinel-1 backscattering over Yanco sites in Australia. Based upon this, Artificial Neural Networks data (feedforward multiplayer perception, MLP, Levenberg-Marquadt algorithm) are compared with Fractal approach (brownian fractal, Hurst exponent of 0.5). When using ANNs, training data are achieved from theoretical forward scattering models, Integral Equation Model (IEM). and Sentinel-1 measurements. The network is trained by 20 neurons and one hidden layer, and one input layer. On the other hand, fractal surface roughness is generated by fitting 1D power spectrum model with roughness spectra. Fractal roughness profile is produced by a stochastic process describing probability between two points, and Hurst exponent, as well as rms heights (a standard deviation of surface height). Main interest of this study is to estimate a spatial variability of roughness without the need of local measurements. This non-local approach is significant, because we operationally have to be independent from local stations, due to its few spatial coverage at the global level. More fundamentally, SAR roughness is much different from local measurements, Remote sensing data are influenced by incidence angle, large scale topography, or a mixing regime of sensors, although probe deployed in the field indicate point data. Finally, demerit and merit of these approaches will be discussed.
이 연구에서는 고해상도 위성영상을 이용하여 지표면 온도를 산출하는 기존의 여러가지 방법 이외에 보다 새로운 접근으로, 인공지능 기반의 심층신경망 기법을 148장의 Landsat 8 영상에 적용하여 우리나라 지표면온도를 산출하고 그 적합성을 평가하였다. Landsat 8 열적외 10번 밴드(약 11 ㎛ 파장대)의 밝기온도와 방출률은 물리방정식에 경험상수가 결합하여 도출된 값이기 때문에, 지역적 기상, 기후, 지형, 식생 등의 조건에 따른 불확실성을 내포하고 있다. 이를 보완하기 위하여 본 연구에서는 밝기온도와 방출률로부터 지표면온도 초기추정치 T0를 산출하고 이와 함께, NDVI, 토지피복, 지형요소(고도, 경사, 향, 거칠기) 등을 입력변수로 하는 계절별 심층신경망 모델을 최적화하여 지표면온도를 산출하였다. 이는 ASOS(Automated Synoptic Observing System)와의 선형관계식으로 편의보정을 수행하는 기존 방법에 비해 진보된 기법이다. ASOS 관측치와 시공간적으로 일치되는 1,728건의 자료를 비교한 결과, 계절별로 차이가 있기는 하지만 특히 봄, 가을에는 상당히 좋은 결과를 보였으며(CC=0.910~0.917, RMSE=3.245~3.365℃), 또한 토지피복 유형에 상관없이 안정적인 산출이 이루어짐을 확인하였다. 향후 Landsat 5/7/8 자료의 장기시계열 빅데이터와 함께 추가적인 지표면변수를 활용하여 모델링 을 수행함으로써 기후변화 및 특이기상 하에서도 보다 신뢰도 높은 고해상도 지표면온도 산출이 필요할 것이다.
램버시안 구름 모델(Lambertian Cloud Model)은 구름이 존재하는 대기의 연직 오존 분포를 효과적으로 산출하기 위해 사용되는 단순화된 구름 모델이다. 램버시안 구름 모델을 사용함으로써 복사 전달 모의에 필요한 구름의 광학적 특징들은 Optical Centroid Cloud Pressure(OCCP)와 Effective Cloud Fraction(ECF)으로 모수화되며, 각 모수의 정확도는 복사 모의 정확도에 큰 영향을 미친다. 하지만 OCCP 오차에 따라 발생하는 연직 오존 산출 오차는 복사 환경과 알고리듬 설정에 따라 다르게 나타나기 때문에 일반화가 매우 어렵다. 또한, OCCP 오차의 영향은 연직 오존 산출 과정에서 발생하는 다른 오차들과 혼재하기 때문에 이를 분석하는 것 또한 어렵다. 본 연구는 두 가지 방법을 사용하여 OCCP 오차로 인한 오존 산출 오차를 분석하였다. 첫 번째로, OCCP 오차가 최적 추정법(Optimal Estimation)에서 오존 산출에 미치는 영향을 모의하였다. 이를 위해 OCCP 오차에 따른 복사량 오차를 LIDORT 복사 모델로 산출하였다. 복사량 오차를 오존 산출 오차로 변환하기 위해 최적 추정법의 변환식에 복사량 오차를 대입하였고, 그 결과 OCCP를 100 hPa 높게 입력했을 때 전체 오존량이 약 2.7% 과대산출되는 것으로 나타났다. 두 번째로, 사례 분석을 통해 OCCP 오차로 인한 오존 오차를 확인하였다. 사례 분석을 위해 OCCP 오차를 가정하여 오존 산출 오차를 모의하였고, 이를 OMI 오존 프로파일 산출물인 PROFOZ 2005-2006의 사례에서 나타난 오존 오차와 비교하였다. 사례에서 나타난 오존 오차를 정의하기 위해서 이상적인 가정을 전제하였으며, 가정을 전제할 수 있도록 지표 반사도, 오존의 수평 변화율 등을 고려하여 비교적 안정적으로 오존 오차를 근사할 수 있는 49개의 사례를 선정하였다. 사례 분석 결과, 49개의 사례 중 27개(약 55%)의 사례에서 0.5 이상의 상관관계가 나타났다. 오존 프로파일 산출 특성을 고려하였을 때, 이러한 결과는 OCCP의 오차가 오존 프로파일 산출 정확도에 상당한 영향을 주고 있는 것으로 판명되었다.
일반적인 문서에 대한 정보 검색 연구는 활발히 진행되고 있으며, 일상 생활 속에서도 대중화되어 많이 사용되고 있다. 이에 따라 음성, 이미지 검색 등 특정 분야의 검색에 대한 연구도 활발히 진행되고 있지만, 수학식 검색에 대한 연구는 비교적으로 미비한 실정이다. 수학식 검색과 관련된 연구들은 대부분 MathML (Mathematical Markup Language), TeX 등으로 작성된 수학식을 대상으로 진행되었지만, 특정 언어나 별개의 수학 입력 툴들을 이용한 검색 방법은 일반 사용자들이 사용하기에는 쉽지 않다는 단점이 있다. 그래서, 본 논문에서는 일반 문서 검색과 마찬가지로, 수학식을 읽듯이 한글을 입력했을 때 색인어 추출 방법 및 검색 방법에 대해 제안한다. 실험을 위해서 수학 문제집에 나오는 1,432개의 수학식을 한글화 시켰고, 한글화된 결과에 대해 패턴 등을 추출하여 MRR (Mean Reciprocal Rank), $Rel_{EQ}$@N(Relevance evaluation at N)로 평가하였다. 100개의 한글 질의어에 대해 MRR@5로 계산된 수학식 검색 결과가 약 0.6 정도 되는 것을 확인할 수 있었고, 학습 데이터에 포함되지 않은 질의수학식 5개에 대해 $Rel_{EQ}$@5로 계산했을 때 평균 60% 의 정확률을 보였다.
압축된 동영상에서 인덱싱을 위한 장면전환 검출기법에서 기존의 방법들은 실험에 의한 고정 임계값을 설정하여 임계값 보다 크면 장면전환이라고 판단해왔다. 기존의 고정 임계값을 적용시켰을 때는 플래쉬나 카메라 움직임 등에 의한 오검출이 많은 문제점이 있었다. 본 논문에서는 장면 전환 검출을 위한 임계값을 동영상 특성 중, 장면전환점간격을 이용하여 임계값을 동적으로 변화시키는 방법이며, 고정 임계값을 사용하는 경우보다 오검출을 줄이는 향상된 장면전환 검출기법을 제안한다. 실험에서는 동영상 특성을 통계적으로 분석하여, 기존의 고정임계값과 제안한 동적임계값을 사용한 결과 값을 비교분석 하였다. 제안한 방법은 기존의 방법보다 30%정도 오검출이 줄었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.