• Title/Summary/Keyword: Equation of plane

Search Result 749, Processing Time 0.027 seconds

Desirable pH of Slurry in Desulfurization Absorber for a 1000 MW Coal Fired Power Plant (1000 MW급 석탄화력발전용 탈황흡수탑의 적정슬러리 pH)

  • Park, Jeong-kee;Yoo, Hoseon
    • Plant Journal
    • /
    • v.15 no.1
    • /
    • pp.38-44
    • /
    • 2019
  • This research is an experimental investigation to find the desirable pH of slurry in the desulfurization absorber for a 1000 ㎿ coal fired power plant, operating in compliance with the Air Environmental Conservation Act and the plant's internal regulations. In case the average sulfur dioxide concentration in inflow flue gas, ${\bar{C\;in}}$ [ppm] changed to 500 ppm, 550 ppm, 600 ppm and 635 ppm after fixing inflow flue gas flow rate, generator output, pressure drop in the absorber, and oxidation air flow rate, the desirable pH of the slurry in the absorber, was 5.0, 5.2, 5.3 and 5.4. Thus, it is recommended that the desirable pH of slurry is calculated using the correlation equation, $RpH=0.0018{\times}{\bar{C\;in}}+4,2031$ when the average sulfur dioxide concentration in the inflow flue gas is in the range of 500 ppm to 635 ppm.

Half-dome Thermo-forming Tests of Thermoplastic Glass Fiber/PP Composites and FEM Simulations Based on Non-orthogonal Constitutive Models (열가소성 유리섬유/PP 복합재의 반구돔 열성형 평가 및 비직교 구성방정식을 이용한 FEM 수치해석)

  • Lee, Wonoh
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.236-242
    • /
    • 2016
  • In this work, tensile and in-plane shear tests for thermoplastic glass fiber/polypropylene composites were performed at a thermo-forming temperature and their properties were characterized and mathematically expressed by using the non-orthogonal constitutive model. As for the thermo-forming test, half-dome experiments were carried out by varying the usage of a releasing agent and the weight of holders. As results, the optimum final shape having well-aligned symmetry and no wrinkle formation was obtained when the releasing agent was used, and it was found that the careful control of a holding force is crucial to manufacture the healthy product. Furthermore, FEM simulations based on the non-orthogonal model showed similar final shapes and tendency of wrinkle formation with experimental results, and confirmed that wrinkles increase with less holding force and higher punch force is required under high frictional condition.

Desirable pH of Slurry in the Desulfurization Absorber for a 200 MW Anthracite Power Plant (200 MW급 무연탄 발전용 탈황 흡수탑에서 적정 슬러리pH)

  • Choi, Hyun-Ho;Yoo, Hoseon
    • Plant Journal
    • /
    • v.16 no.1
    • /
    • pp.38-43
    • /
    • 2020
  • In this study, Seochon Thermal Power Plant No.1 for anthracite coal was tested to find the proper operation range of limestone slurry pH in the absorber tower which can be operated continuously in compliance with the Air Quality Preservation Act and Seocheon Thermal Power Division's internal regulation, sulfur dioxide average emission regulation. When operating the sulfur dioxide concentration [ppm] in the combustion gas flowing into the desulfurization absorption tower at 370, 400, 460 and 550 ppm while the main operating elements such as the flow rate of the combustion gas were fixed, the proper slurry pH Were 4.4, 4.5, 4.8 and 5.1, respectively. Therefore, it is recommended to operate with the correlation equation, RpH=0.004×Cin+2.93 derived using sulfur dioxide and the appropriate slurry pH.

Reactive Acoustic Filter based on the Phase Cancellation Effect (위상 반전 현상을 이용한 덕트 소음 제거기)

  • 강종민
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.600-606
    • /
    • 1999
  • A reactive type acoustic filter is developed based on the phase cancellation effect which is occurring in the plane wave propagation through the two paths where the cross sectional areas are reversely changing. The theory is experimentally validated by the use of a cylindrical duct and an inserted hollowed cone of which vertex part is eliminated. Noise attenuation and the filtered frequency are dependent on the area variation and the effective length of the filter. Experimental comparison shows that the filtered frequencies of 1st and 2nd mode are lower than the analytical prediction due to the mass loading effects, and the 3rd mode is in good agreement. The proposed filter can be applied as an in-duct noise filter for improving the sound quality in a narrow space for various industrial applications.

  • PDF

고해상도 관측위성의 지상궤적 유지조정 알고리즘 연구

  • Park, Jae-Ik;Park, Sang-Yeong;Lee, Byeong-Seon;Hwang, Yu-Ra;Choe, Gyu-Hong
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.39.4-40
    • /
    • 2009
  • 이 연구의 목적은 고해상도 합성개구레이더 센서를 탑재한 관측위성의 운용요구사항에 맞춰 임무기간 동안 관측 목표지역을 주기적으로 반복하고 지상궤적을 $\pm2km$ 범위 내에서 안정성을 갖도록 유지 조정하는 궤도제어 알고리즘 연구를 수행하는데 있다. 기존에 수행되어 왔던 지상궤적에 대한 오차를 해석적으로 계산하여 궤도를 유지 조정하는 방법이 아닌 기준궤도에 대하여 상대좌표계에서 표현된 위성의 실제 접촉궤도를 기준궤도와 직접적으로 비교하여 목표궤적을 유지 조정하는 알고리즘을 연구하였다. 이를 위해 첫째, 고해상도 관측위성의 운용요구사항을 만족하는 계획된 목표궤도인 기준궤도를 설계하였다. 기본적으로 기준궤도는 임무 설계 시 완전한 주기성이 고려된 최대한 실제에 가까운 궤도이기 때문에 지구중력장 모델만을 고려하여 간략하게 설계하였다. 둘째, 실제의 인공위성의 궤도는 계획된 기준궤도를 유지해야 하지만 시간에 따라 섭동력의 영향을 받아 계획된 궤도로부터 벗어나게 된다. 기준궤도로부터 실제궤도가 얼마나 벗어나는지에 대한 정량적 분석을 위해 지구 중력장, 달-태양 중력, 대기저항력, 태양복사압, 조석력 등과 같은 다양한 섭동력의 영향에 대한 분석을 수행하였다. 셋째, 반경방향(radial), 진행방향(along-track), 교차방향(cross-track)의 세 방향의 성분으로 구성된 우주공간오차(Space Error) 개념을 적용하여, 투영된 지상궤적에 상응하는 오차를 계산하는 것 보다 안정적으로 오차를 계산하였다. 또한 운용요구사항에 따라 허용된 범위 내에서 궤도를 유지하기 위해 GVE(Gauss Variation Equation)을 이용한 궤도조정을 수행하였다. 섭동력의 분석 결과로부터 지구대기저항력, 달-태양 중력으로 인해 가장 두드러지는 장반경과 궤도이심률의 변화를 조정하기 위해, 임무에 사용되는 추력기의 연료 효율을 고려하여 동결궤도가 유지될 수 있는 최적의 위도이각에서 In-plane에 대한 궤도조정만을 수행하여 장반경과 이심률을 동시에 조정하였다. 지구대기와 태양활동의 영향으로 시간에 따른 장반경의 변화율에 따라 궤도조정 주기를 가지는 것을 알 수 있었고, 이 변화율 때문에 생기는 우주공간오차의 증가를 보정하여 위성의 지상궤적을 목표범위 안에서 유지할 수 있었다.

  • PDF

Influences of direction for hexagonal-structure arrays of lens patterns on structural, optical, and electrical properties of InGaN/GaN MQW LEDs

  • Lee, Kwang-Jae;Kim, Hyun-June;Park, Dong-Woo;Jo, Byoung-Gu;Oh, Hye-Min;Hwang, Jeong-Woo;Kim, Jin-Soo;Lee, Jin-Hong;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.153-153
    • /
    • 2010
  • Recently, to develop GaN-based light-emitting diodes (LEDs) with better performances, various approaches have been suggested by many research groups. In particular, using the patterned sapphire substrate technique has shown the improvement in both internal quantum efficiency and light extraction properties of GaN-based LEDs. In this paper, we discuss the influences of the direction of the hexagonal-structure arrays of lens-shaped patterns (HSAPs) formed on sapphire substrates on the crystal, optical, and electrical properties of InGaN/GaN multi-quantum-well (MQW) LEDs. The basic direction of the HSAPs is normal (HSAPN) with respect to the primary flat zone of a c-plane sapphire substrate. Another HSAP tilted by 30o (HSAP30) from the HSAPN structure was used to investigate the effects of the pattern direction. The full width at half maximums (FWHMs) of the double-crystal x-ray diffraction (DCXRD) spectrum for the (0002) and (1-102) planes of the HSAPN are 320.4 and 381.6 arcsecs., respectively, which are relatively narrower compared to those of the HSP30. The photoluminescence intensity for the HSAPN structure was ~1.2 times stronger than that for the HSAP30. From the electroluminescence (EL) measurements, the intensity for both structures are almost similar. In addition, the effects of the area of the individual lens pattern consisting of the hexagonal-structure arrays are discussed using the concept of the planar area fraction (PAF) defined as the following equation; PAF = [1-(patterns area/total unit areas)] For the relatively small PAF region up to 0.494, the influences of the HSAP direction on the LED characteristics were significant. However, the direction effects of the HSAP became small with increasing the PAF.

  • PDF

Study of the Efficiency Droop Phenomena in GaN based LEDs with Different Substrate

  • Yoo, Yang-Seok;Li, Song-Mei;Kim, Je-Hyung;Gong, Su-Hyun;Na, Jong-Ho;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.172-173
    • /
    • 2012
  • Currently GaN based LED is known to show high internal or external efficiency at low current range. However, this LED operation occurs at high current range and in this range, a significant performance degradation known as 'efficiency droop' occurs. Auger process, carrier leakage process, field effect due to lattice mismatch and thermal effects have been discussed as the causes of loss of efficiency, and these phenomena are major hindrance in LED performance. In order to investigate the main effects of efficiency loss and overcome such effects, it is essential to obtain relative proportion of measurements of internal quantum efficiency (IQE) and various radiative and nonradiative recombination processes. Also, it is very important to obtain radiative and non-radiative recombination times in LEDs. In this research, we measured the IQE of InGaN/GaN multiple quantum wells (MQWs) LEDs with PSS and Planar substrate using modified ABC equation, and investigated the physical mechanism behind by analyzing the emission energy, full-width half maximum (FWHM) of the emission spectra, and carrier recombination dynamic by time-resolved electroluminescence (TREL) measurement using pulse current generator. The LED layer structures were grown on a c-plane sapphire substrate and the active region consists of five 30 ${\AA}$ thick In0.15Ga0.85N QWs. The dimension of the fabricated LED chip was $800um{\times}300um$. Fig. 1. is shown external quantum efficiency (EQE) of both samples. Peak efficiency of LED with PSS is 92% and peak efficiency of LED with planar substrate is 82%. We also confirm that droop of PSS sample is slightly larger than planar substrate sample. Fig. 2 is shown that analysis of relation between IQE and decay time with increasing current using TREL method.

  • PDF

AC transport current loss analysis for a face-to-face stack of superconducting tapes

  • Yoo, Jaeun;Youm, Dojun;Oh, SangSoo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.2
    • /
    • pp.34-38
    • /
    • 2013
  • AC Losses for face to face stacks of four identical coated conductors (CCs) were numerically calculated using the H-formulation combined with the E-J power law and the Kim model. The motive sample was the face to face stack of four 2 mm-wide CC tapes with 2 ${\mu}m$ thick superconducting layer of which the critical current density, $J_c$, was $2.16{\times}10^6A/cm^2$ on IBAD-MgO template, which was suggested for the mitigation of ac loss as a round shaped wire by Korea Electrotechnology Research Institute. For the calculation the cross section of the stack was simply modeled as vertically aligned 4 rectangles of superconducting (SC) layers with $E=E_o(J(x,y,t)/J_c(B))^n$ in x-y plane where $E_o$ was $10^{-6}$ V/cm, $J_c$(B) was the field dependence of current density and n was 21. The field dependence of the critical current of the sample measured in four-probe method was employed for $J_c$(B) in the equation. The model was implemented in the finite element method program by commercial software. The ac loss properties for the stacks were compared with those of single 4 cm-wide SC layers with the same critical current density or the same critical current. The constraint for the simulation was imposed in two different ways that the total current of the stack obtained by integrating J(x,y,t) over the cross sections was the same as that of the applied transport current: one is that one fourth of the external current was enforced to flow through each SC. In this case, the ac loss values for the stacks were lower than those of single wide SC layer. This mitigation of the loss is attributed to the reduction of the normal component of the magnetic field near the SC layers due to the strong expulsion of the magnetic field by the enforced transport current. On the contrary, for the other case of no such enforcement, the ac loss values were greater than those of single 4cm-wide SC layer and. In this case, the phase difference of the current flowing through the inner and the outer SC layers of the stack was observed as the transport current was increased, which was a cause of the abrupt increase of ac loss for higher transport current.

Effect of Wave-Induced Seepage on the Stability of the Rubble Mound Breakwater (동적 파랑에 의한 침투류가 사석경사식 방파구조물의 안정성에 미치는 영향)

  • Hwang, Woong-Ki;Kim, Tae-Hyung;Kim, Do-Sam;Oh, Myounghak;Park, Jun-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.3
    • /
    • pp.13-27
    • /
    • 2018
  • To study how stable the rubble mound breakwaters are, one can look to the research of wave induced seepage flow through the pores of the rubble mound. Seepage flow is generally generated by the difference between the water level around the breakwater during a typhoon. The existing stability analysis method of the rubble mound is the static analysis which simply considers the force equilibrium taking into account the horizontal force acting on the concrete block induced by a wave (calculated by Goda equation) and the vertical force induced by the weight inclusive of the concrete block, quarry run, filter, and armor layer above the slipping plane. However, this static method does not consider the wave-induced seepage flow in the rubble mound. Such seepage may decrease the stability of the rubble mound. The stability of a rubble mound breakwater under the action of seepage was studied based on the results of CFD software (OpenFOAM) and Limit Equilibrium Method (GeoStudio). The numerical analysis result showed that the seepage flow decreased the stability of the rubble mound breakwaters. The results of the numerical analyses also revealed the stability of the rubble mound was varied with time. Especially, the most critical state happened at the condition of overtopping the concrete block, acting strong uplift pressure raising along side and underneath the concrete block, and generating high pore pressure inside rubble mound due to seepage flow. Therefore, it may be necessary to conduct a dynamic analysis considering the effect of wave-induce seepage flow together with the static analysis.

The Study of Relationship between Berm Width and Debris Flow at the Slope (사면에서 토석류와 소단폭의 관계성에 관한 연구)

  • Kim, Sungduk;Oh, Sewook;Lee, Hojin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.11
    • /
    • pp.5-12
    • /
    • 2013
  • The purpose of this study is to estimate the behavior and the mechanism of debris flow at the end of mountain side when a berm was set on the inclined plane. The numerical model was performed by using the Finite Difference Method(FDM) based on the equation for the mass conservation and momentum conservation. In order to measure the behavior of the debris flow, the debris flow of a straight channel slope and the debris flow of channel slope with 3 types of berms were compared. First, the flow discharge and the sediment volume concentration at the downstream of the channel slope, depending on the various berm width and the different inflow discharges at the upstream of the channel were analyzed. The longer the berm width, the flow discharge at the downstream of the channel was decreased and the high flow fluctuation was reduced by a berm. And it means that a berm can effect for the delay of the debris flow. Through Root Mean Square ratio(RMS) comparison, the flow discharge of the channel slope with a berm was lower than that of a straight channel slope. The longer the berm width, for the sediment volume concentration, an inflection point did not show but mild curve. Because the low sediment concentration with water mixture by a berm continuously flow at the downstream end, it will be effect for reducing the disaster caused by debris flow. The results of this study will provide useful information in predicting and preventing disaster caused by the debris flow.