• 제목/요약/키워드: Equality Constraints

검색결과 89건 처리시간 0.024초

구조체의 위상학적 최적화를 위한 비선형 프로그래밍 (NLP Formulation for the Topological Structural Optimization)

  • Bark, Jaihyeong;Omar N. Ghattas;Lee, Li-Hyung
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 봄 학술발표회 논문집
    • /
    • pp.182-189
    • /
    • 1996
  • The focus of this study is on the problem of the design of structure of undetermined topology. This problem has been regarded as being the most challenging of structural optimization problems, because of the difficulty of allowing topology to change. Conventional approaches break down when element sizes approach to zero, due to stiffness matrix singularity. In this study, a novel nonlinear Programming formulation of the topology Problem is developed and examined. Its main feature is the ability to account for topology variation through zero element sizes. Stiffness matrix singularity is avoided by embedding the equilibrium equations as equality constraints in the optimization problem. Although the formulation is general, two dimensional plane elasticity examples are presented. The design problem is to find minimum weight of a plane structure of fixed geometry but variable topology, subject to constraints on stress and displacement. Variables are thicknesses of finite elements, and are permitted to assume zero sizes. The examples demonstrate that the formulation is effective for finding at least a locally minimal weight.

  • PDF

Optimal Route Planning for Maritime Autonomous Surface Ships Using a Nonlinear Model Predictive Control

  • Daejeong Kim;Zhang Ming;Jeongbin Yim
    • 한국항해항만학회지
    • /
    • 제47권2호
    • /
    • pp.66-74
    • /
    • 2023
  • With the increase of interest in developing Maritime Autonomous Surface Ships (MASS), an optimal ship route planning is gradually gaining popularity as one of the important subsystems for autonomy of modern marine vessels. In the present paper, an optimal ship route planning model for MASS is proposed using a nonlinear MPC approach together with a nonlinear MMG model. Results drawn from this study demonstrated that the optimization problem for the ship route was successfully solved with satisfaction of the nonlinear dynamics of the ship and all constraints for the state and manipulated variables using the nonlinear MPC approach. Given that a route generation system capable of accounting for nonlinear dynamics of the ship and equality/inequality constraints is essential for achieving fully autonomous navigation at sea, it is expected that this paper will contribute to the field of autonomous vehicles by demonstrating the performance of the proposed optimal ship route planning model.

유전자 알고리즘을 이용한 이족보행 로봇의 계단 보행 (Trajectory Optimization for Biped Robots Walking Up-and-Down Stairs based on Genetic Algorithms)

  • 전권수;권오흥;박종현
    • 한국정밀공학회지
    • /
    • 제23권4호
    • /
    • pp.75-82
    • /
    • 2006
  • In this paper, we propose an optimal trajectory for biped robots to move up-and-down stairs using a genetic algorithm and a computed-torque control for biped robots to be dynamically stable. First, a Real-Coded Genetic Algorithm (RCGA) which of operators are composed of reproduction, crossover and mutation is used to minimize the total energy. Constraints are divided into equalities and inequalities: Equality constraints consist of a position condition at the start and end of a step period and repeatability conditions related to each joint angle and angular velocity. Inequality constraints include collision avoidance conditions of a swing leg at the face and edge of a stair, knee joint conditions with respect to the avoidance of the kinematic singularity, and the zero moment point condition with respect to the stability into the going direction. In order to approximate a gait, each joint angle trajectory is defined as a 4-th order polynomial of which coefficients are chromosomes. The effectiveness of the proposed optimal trajectory is shown in computer simulations with a 6-dof biped robot that consists of seven links in the sagittal plane. The trajectory is more efficient than that generated by the modified GCIPM. And various trajectories generated by the proposed GA method are analyzed in a viewpoint of the consumption energy: walking on even ground, ascending stairs, and descending stairs.

Multiple-loading condition을 고려한 구조체의 위상학적 최적화 (Topological Structural Optimization under Multiple-Loading Conditions)

  • 박재형;홍순조;이리형
    • 전산구조공학
    • /
    • 제9권3호
    • /
    • pp.179-186
    • /
    • 1996
  • 본 연구에서는 구조체의 위상학적 최적화를 위한 비선형 formulation(NLP)가 개발, 검토되었다. 이 NLP는 multiple-loading하에서 임의의 오브젝티브 함수, 응력, 변위 제약조건들을 쉽게 다룰 수가 있다. 또한 이 NLP는 해석과 최적화 디자인을 동시에 실시함으로써 요소 사이즈가 영으로 접근함에 따른 강성 매트릭스의 singularity를 피할 수 있다. 즉, 평형 방정식을 등제약조건으로 치환함으로써 강성 매트릭스 그 자체나 그의 역매트릭스를 구할 필요도 없어진다. 이 NLP는 multiple-loading conditon하에서 테스트되었으며, 이를 통해 이 NLP가 다양한 제약조건하에서 강력하게 작용함이 입증되었다.

  • PDF

제약조건을 고려한 경제급전 제어를 위한 다단계 최적조류계산 알고리즘 (A Multi-level Optimal Power Flow Algorithm for Constrained Power Economic Dispatch Control)

  • 송경빈
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제50권9호
    • /
    • pp.424-430
    • /
    • 2001
  • A multi-level optimal power flow(OPF) algorithm has been evolved from a simple two stage optimal Power flow algorithm for constrained power economic dispatch control. In the proposed algorithm, we consider various constraints such as ower balance, generation capacity, transmission line capacity, transmission losses, security equality, and security inequality constraints. The proposed algorithm consists of four stages. At the first stage, we solve the aggregated problem that is the crude classical economic dispatch problem without considering transmission losses. An initial solution is obtained by the aggregation concept in which the solution satisfies the power balance equations and generation capacity constraints. Then, after load flow analysis, the transmission losses of an initial generation setting are matched by the slack bus generator that produces power with the cheapest cost. At the second stage we consider transmission losses. Formulation of the second stage becomes classical economic dispatch problem involving the transmission losses, which are distributed to all generators. Once a feasible solution is obtained from the second stage, transmission capacity and other violations are checked and corrected locally and quickly at the third stage. The fourth stage fine tunes the solution of the third stage to reach a real minimum. The proposed approach speeds up the two stage optimization method to an average gain of 2.99 for IEEE 30, 57, and 118 bus systems and EPRI Scenario systems A through D testings.

  • PDF

고속의 유효전력 최적조류계산 알고리즘 (A Fast Optimization Algorithm for Optimal Real Power Flow)

  • 송경빈;김홍래
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 C
    • /
    • pp.926-928
    • /
    • 1998
  • A fast optimization algorithm has been evolved from a simple two stage optimal power flow(OPF) algorithm for constrained power economic dispatch. In the proposed algorithm, we consider various constraints such as power balance, generation capacity, transmission line capacity, transmission losses, security equality, and security inequality constraints. The proposed algorithm consists of four stages. At the first stage, we solve the aggregated problem that is the crude classical economic dispatch problem without considering transmission losses. An initial solution is obtained by the aggregation concept in which the solution satisfies the power balance equations and generation capacity constraints. Then, after load flow analysis, the transmission losses of an initial generation setting are matched by the slack bus generator that produces power with the cheapest cost. At the second stage we consider transmission losses. Formulation of the second stage becomes classical economic dispatch problem involving the transmission losses, which are distributed to all generators. Once a feasible solution is obtained from the second stage, transmission capacity and other violations are checked and corrected locally and quickly at the third stage. The fourth stage fine tunes the solution of the third stage to reach a real minimum. The proposed approach speeds up the coupled LP based OPF method to an average gain of 53.13 for IEEE 30, 57, and 118 bus systems and EPRI Scenario systems A through D testings.

  • PDF

변분법에 의한 노심 핵연료 관리 (The In-Core Fuel Management by Variational Method)

  • Kyung-Eung Kim
    • Nuclear Engineering and Technology
    • /
    • 제16권4호
    • /
    • pp.181-194
    • /
    • 1984
  • 변분법을 사용하여 원자로의 핵연료 관리문제를 연구하였다. 원자력 발전소에 영향을 미치는 두 함수 즉 이윤함수와 가격함수는 원자로의 연소도방정식과 최대허용출력 밀도에 대한 부등 제약조건이며, 이들은 임계성의 제약조건이 된다. 초기이윤의 변분해는 원자로에 뚜렷한 두 영역이 있음을 보여 주었다. 즉 일정 출력 영역과 최소 재고량 또는 평활 중성자속 영역이 그것이다. 이들 든 영역의 변이점은 전력에 대한 이윤과 연료에 대한 이자 지급에 상당히 중요하다. 그러므로 각 영역에서 동일 농축도의 핵연료를 가질 동일 부피의 세 영역으로 된 원자로를 최적화 하기 위하여 핵연료 주기 가격 함수가 사용 되었다. 최대 허용 출력 밀도에 대한 부등 제약조건들은 이들 부등 제약 조건이 원자로심의 어느 특정 점이나 로심주기를 통하여 항상 동일 제약조건이 되어야 한다. 원자로의 임계성과 출력밀도에 대한 동일 제약조건에 관계된 핵연료의 연소도에 대한 계차 방정식의 해를 구하였으며 최적 농축도의 위치를 구하기-위하여 구배법을 사용하였다. 이들 계산결과는 부동 제약 조건들을 적절히 적용하면 원자로를 최적화하기 위하여 비선형 최적 기술이 사용될 수 있음을 보여 주었다.

  • PDF

전기자동차용 2속 변속기의 경량 최적 설계 (Optimal Design of Lightweight Two-Speed Transmission of Electric Vehicles)

  • 최재훈;서준호;박노길
    • Tribology and Lubricants
    • /
    • 제36권2호
    • /
    • pp.96-104
    • /
    • 2020
  • The electric vehicle industry is rapidly developing because of enforced environmental regulations, and several studies have been conducted on the multispeed transmission to improve the fuel efficiency of electric vehicles. Among these studies, research on the power density improvement of electric vehicle transmission is critical. Thus, the optimal design of the gear train is necessary to enhance transmission efficiency. In this study, an optimal design methodology for the lightweight two-speed transmission of electric vehicles is proposed. Because a multispeed transmission has many operating conditions and equality and inequality constraints, a new gear design method that combines analytical and iterative methods is applied without using complex optimization algorithms. Sets of possible design variables are generated considering the operating conditions and various design variables. The modules and face width ratios of each stage gear that satisfy the corresponding operating conditions are analytically calculated. The volume of the gear train is calculated, evaluated, and arranged using these values to determine the optimal solution for minimizing the volume, and the proposed methodology is applied to the actual model to verify its effectiveness. The design of a two-speed transmission with multiple operating conditions and constraints without complicated optimization algorithms can be optimized.

Mixed $H_2/H_{\infty}$ Finite Memory Controls for Output Feedback Controls of Discrete-time State-Space Systems

  • Ahn, Choon-Ki;Han, Soo-Hee;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.529-534
    • /
    • 2005
  • In this paper, a new type of output feedback control, called a $H_2/H_{\infty}$ fnite memory control (FMC), is proposed for deterministic state space systems. Constraints such as linearity, unbiasedness property, and finite memory structure with respect to an input and an output are required in advance to design $H_2/H_{\infty}$ FMC in addition to the performance criteria in both $H_2$ and $H_{\infty}$ sense. It is shown that $H_2$, $H_{\infty}$, and mixed $H_2/H_{\infty}$ FMC design problems can be converted into convex programming problems written in terms of linear matrix inequalities (LMIs) with some linear equality constraints. Through simulation study, it is illustrated that the proposed $H_2/H_{\infty}$ FMC is more robust against uncertainties and faster in convergence than the existing $H_2/H_{\infty}$ output feedback control schemes.

  • PDF

로봇팔의 장애물 중에서의 시간 최소화 궤도 계획 (Minimum-Time Trajectory Planning for a Robot Manipulator amid Obstacles)

  • 박종근
    • 한국정밀공학회지
    • /
    • 제15권1호
    • /
    • pp.78-86
    • /
    • 1998
  • This paper presents a numerical method of the minimum-time trajectory planning for a robot manipulator amid obstacles. Each joint displacement is represented by the linear combination of the finite-term quintic B-splines which are the known functions of the path parameter. The time is represented by the linear function of the same path parameter. Since the geometric path is not fixed and the time is linear to the path parameter, the coefficients of the splines and the time-scale factor span a finite-dimensional vector space, a point in which uniquely represents the manipulator motion. The displacement, the velocity and the acceleration conditions at the starting and the goal positions are transformed into the linear equality constraints on the coefficients of the splines, which reduce the dimension of the vector space. The optimization is performed in the reduced vector space using nonlinear programming. The total moving time is the main performance index which should be minimized. The constraints on the actuator forces and that of the obstacle-avoidance, together with sufficiently large weighting coefficients, are included in the augmented performance index. In the numerical implementation, the minimum-time motion is obtained for a planar 3-1ink manipulator amid several rectangular obstacles without simplifying any dynamic or geometric models.

  • PDF