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NLP Formulation for the Topological Structural Optimization
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Abstract

The focus of this study is on the problem of the design of structure of undetermined
topology. This problem has been regarded as being the most challenging of structural
optimization problems, because of the difficulty of allowing topology to change. Conventional
approaches break down when element sizes approach to zero, due to stiffness matrix
singularity. In this study, a novel nonlinear programming formulation of the topology problem
is developed and examined. Its main feature is the ability to account for topology wvariation
through zero element sizes. Stiffness matrix singularity is avoided by embedding the
equilibrium equations as equality constraints in the optimization problem. Although the
formulation is general, two dimensional plane elasticity examples are presented. The design
problem is to find minimum weight of a plane structure of fixed geometry but variable
topology, subject to constraints on stress and displacement. Variables are thicknesses of finite
elements, and are permitted to assume zero sizes. The examples demonstrate that the
formulation is effective for finding at least a locally minimal weight.

1. Introduction

The problem of determining the optimal topology of structures modeled by finite elements
is addressed. The problem is defined as follows: given a structure with fixed nodal locations
and a list of possible element incidences (the ground structure), and given upper and lower
bounds on displacements and stresses arising from loading conditions, find the subset of
elements, and corresponding sizes, which minimize some function of the design variables. The
design problem then includes configurational as well as sizing decisions. Examples of design
variables include bar cross-sectional area, plate thickness, and beam moment of inertia..

We present a nonlinear programming (NLP) formulation for the topology problems. Our
development addresses weight minimization of (possibly) inhomogeneous plate structure
subject to stress, displacement; however, the topological formulation for other structures
discretized by finite elements and other constraints types is possible and follows a similar
development. We assume the optimization problem is solved by projected Lagrangian
techniques‘”, which require at least zero— (values of objective and constraints) and
first- (objective gradient and constraint Jacobian) order information to construct a
linearly—constrained subproblem, the solution of which determines a search direction.
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For example, the popular sequential quadratic programming (SQP) algorithm uses a quadratic
programming subproblem to determine the search direction.

The obvious approach to solving topological optimization problems of allowing zero lower
bounds on the size of elements breaks down with a conventional hierarchical formulation, i.e.,
a formulation which eliminates state variables (e.g. displacements, stress) from the model by
solving the equilibrium equations at each optimization iteration. In this formulation, an
analysis is performed to provide zero-order information for constraints, and sensitivity
information is computed based on the analysis, vielding first-order information. The results
are then used to construct a linearly-constrained subproblem, the solution of which is used to
find a new search direction. Consequently, the number of optimization variables is equal to
the number of design variables, and the constraints are limited to those dictating design. The
resulting Jacobian and Hessian matrices are small and dense. If critical element sizes assume
zero value (as desired in topological optimization), stiffness matrix singularity can ensue, and
the algorithm terminates at a suboptimal solution. The simple fix of altering the structural
model as an element size reaches a small value ¢ is not satisfactory: if & is too large, the
decision to alter the model by dropping an element may be premature (which is important
since the element can not be recovered, since it is not contained within the model); if & is
too small, the resulting stiffness matrix may be ill-conditioned, leading to poor calculated
displacements and stresses (which can mislead the optimization).

On the other hand, the simultaneous formulation includes the equilibrium equations as
equality constraints, and requires only their evaluation and not their solution at each iteration.
Its use results in a larger number of constraints and variables, which now include state
variables as well as design variables as unknowns. Even though the Jacobian and Hessian
matrices are larger, they are sparse, and the total number of nonzeroes is typically much
smaller than in the hierarchical formulation. With proper exploitation of sparsity, and
especially if the behavior is nonlinear, greater efficiency can be achieve. The optimization
process now moves towards a set of variables which simultaneously satisfy equilibrium and
minimize the objective. In contrast to the hierarchical formulation, invertibility of stiffness
matrix is not required, and sub-structures can be created by deleting elements (which might
cause singularity of the stiffness matrix of the original structure). This is consequence of the
fact that only the residual of the equilibrium equations is required for zero-order information,
and only the pseudo-force vectors associated with sensitivity analysis and an evaluation of
the stiffness matrix are required for first order information. The linearly-constrained
subproblem is well-posed, the Jacobian matrix has full row rank, and a numerical solution to
the subproblem can be readily obtained.

2. NLP Formulation for the Optimal Topology Problem

2.1 General Nonlinearly Constrained Optimization
The general constrained optimization problem may be expressed as :

minimize  F(x) objective function

subject to: @21
gix) =0 i=1,2.,me equality constraints
gi(x) =0 I = Me,.., M inequality constraints

where
me number of equality constraints
m number of total constraints
X a vector containing optimization design variables
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The objective function or any of the constraints imposed on the variables do not always
involve only linear function. Most often the case in design optimization involves nonlinear
function. Then, the problem is said to be one of the class of nonlinear programming problems
(NLP).

2.2 Hierarchical Method and Simultaneous Method

2.2.1 Hierarchical Method

Figure 2.1 shows the general optimum design processl). Thus conventional optimization
formulation for structural design (the hierarchical method) does not include equilibrium
equations (Ku=P) in its constraints.

Identify:

(1) Design variables

(2) Cost function to be minimized

(3) Constraints that must be minimized

1

Collect data to
describe the system

[ Estimate initial design |

Analyze the system:
Solve Ku=P

|

Check
the Constraints

|

Does the design satisfy
convergence criteria? Yes

INo

Change the design using
an optimization method

]

Figure 2.1 Optimum design process

Stop

It eliminates displacement variables in constraints by solving equilibrium eguations at each
optimization iteration. Hence, the hierarchical formulation is expressed as follows (assume the
constraints are related to only displacements and stresses) :

gix) = CIK&)'Px)] - w = 0 (2.2)

g2(x) = CAKx) 'P(x)] -~ 6= 0 2.3)
where

gi(x) displacement constraints

ga(x) stress constraints

Ci, G matrix of constant coefficients

K(x) stiffness matrix

P(x) a vector of applied loads
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up displacement limits
b stress limits

Clearly, these constraints are not meaningful when element sizes assume zero values, since
the stiffness matrix becomes singular and its inverse no longer exists.

2.2.2 Simultaneous Method
The simultaneous formulation directly includes the equilibrium equations as equality

constraints. The simultaneous formulation is expressed as follows:

gix) = Culx) ~w = 0 (2.4)
ga(x) = Cau(x) - 6= 0 (2.5)
gelx) = K(xX)u(x) - P(x) = 0 2.6)

The problem size becomes larger than that of the hierarchical method because of the larger
number of variables in the constraints. But by including the equilibrium equations as equality
constraints, one can avoid its singularity. It does not require stiffness matrix inversion. It
requires only their evaluations, not their solution, at each optimization iteration.

2.3 NLP Formulation for the Topological Structural Optimization
As stated above, our development addresses the minimum weight of structures. It
incorporates zero sizes; hence, the simultaneous method is used to insure that matrix

singularity is avoided.

Formulation
The NLP for the optimal topology is stated as follows :

objective function:

k
minimize F = total weight = i; Aipiti 2.7
constraints:
subject to:
Equilibrium equation:
Ku-P=0 (2.8)
Stress constraints:
o< o =< oY q=l, - k (2.9)
Displacement constraints:
< ou s (2.10)
Thickness constraints:
th < 6 <% v=], k (2.11)

Parameters are defined as:

k number of total elements

n number of degree of freedom after applying boundary condition
K n Xn-stiffness matrix

P n-vector of applied nodal loads

o
U
u

O'Li, Y stress lower (upper) bounds of element i
ut, " n-vector of nodal displacement lower (upper) bounds
t tY thickness lower (upper) bounds of element i

A area of element i

Qi density of element i
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and the variables are defined as:

ti thickness of element

u n-vector of nodal displacement
Remarks
« All functions (2.7)-(2.11) are assumed to be continuously differentiable.
+ The nonlinearity in this formulation is found in the equilibrium equations (2.8) and stress
constraints (2.9), which include bilinear product of displacement and thickness. The objective
function (2.7) and all other constraints are linear.
. If none of the t% is zero, then the NLP (2.7)-(2.11) is no longer a topological design
problem and topology is fixed by the thickness lower bounds.
+ There is no guarantee that a unique minimum exist, or that a local minimizer coincides
with a global minimizer.
«+ A single stress constraints (2.9) or displacement constraints (2.10) can be chosen, if needed.

2.4 Sequential Quadratic Programming Algorithm

The sequential quadratic programming (SQP) method is generally regarded as the best
technique solving the NLP @2.1)® , and will be the method of choice in this study. SQP can be
derived as a Newton method for solving the first-order constrained stationary conditions”, It
is based on the iterative formulation and solution of gquadratic programming subproblems.
These subproblems are defined by an objective function consisting of a quadratic
approximation of the Lagrangian function, the minimization of which is subject to linear
approximations of the original constraints. That is:

minimize %DTRB(Xk,Ak)Dk + VF(x) "pr

subject to:
Vgidx) P + gilxi) = 0 i=1,2,.., me
Vaixi) 'k + gilxk) = 0 i = Mes,..., M

X" - xe < pr < xU - x«

where By is a positive definite approximation of the Hessian of the Lagrangian function.
Xx represents the current iterate points. Let px be the solution of the subproblem. A line
search is used to find a new point Xx.1, where

Xk=Xk + @Dk a €(0,1]

such that a merit function will have a lower function value at the new point. The augmented
Lagrange function is used here as the merit function. When optimality is not achieved, Bk is
updated according to the BFGS formula.

Remarks

+ SQP applied to this problem requires at least the gradient of objective function and
Jacobian matrix of the constraint set with respect to the optimization variables. Second
derivative informations can be approximated from differences of first derivatives. These
techniques are known as quasi-Newton method.

3. Examples of NLP for Topology Optimization

The NLP formulation of the topology problem is tested with 12X20 element rectangular
model fixed at bottom depicted in Figure 3.1. This model contains 140 D.O.F. and 120
elements. This problem has one equality constraint set (equilibrium equations) and four
inequality constraint sets (three stress and one thickness constraints). Hence, it has 260
(number of D.O.F.+number of total elements) variables and 620 constraints. Therefore, its
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Jacobian size is 620X260. The initial guesses are computed using the equilibrium equations
and an initial guess for thickness of 0.5cm. Exact derivatives are used to construct the
gradient of objective function and Jacobian matrix of the constraints. Initial guesses for the
state variables (displacements) are computed from the equilibrium equations for an initial
design to initiate the SQP method.
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Figure 3.1 Model

Common data for problems
« Aluminum (Al 6061-T6) is the material, i.e.
E = 70Gpa oy = 240Mpa ry = 140Mpa
o = 0.002710kg/cm’ v = 034615
+ Triangular finite elements are used.
« The structure is in plane stress.
« For stress constraints, 2 principle stress (o1, ¢2 and maximum shear stress (7 max) are
calculated for each element, and these stresses should be less than (or equal to) the
maximum tension (compression, shear) stresses. That is,
61 £ oy
g2 = 0Oy
Tmax < Ty
« For thickness constraints, following is used:
0. <t<10
+ Density and areas of all elements are equal in each example, hence, the objective function
is set to F = 2t
+ If thickness of any element reaches zero, stress in that element is defined as zero.
+ SQP terminates when the optimality condition is less than 107

Figures 3.2-34 show the optimal topology. Interestingly, Elements 18, 38, 58 and 119 in
case 2.1 and Elements 85 and 15 in case 2.2 have nonzero thickness, but these elements have
zero thickness in case 2.3 (which is the combination of case 2.1 and case 2.2). Symbolically,

Applied loads: Peasez1 + Peasezz = Peasezs
however,
ReSUIting TODOIOgy~' Tease21 * Teasez2 ¥ Tease23
Number of iterations to converge to the optimality and minimum weights are shown in
Table 3.1.
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Figure 3.2 Optimal topology of case 2.1

total P=1920 kg

Figure 3.3 Optimal topology of case 2.2

total P=1920 kg
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Figure 3.4 Optimal topology of case 2.3
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nggiz ) Initia(lk;v)eight No. of iteration Optim(aligv)veight
Case 2.1 0.0813 40 0.02885943
Case 2.2 0.0813 24 0.02879123
Case 2.3 0.0813 50 0.05677134

Table 3.1 Optimal results

4. Conclusion

We have presented an NLP formulation for the optimal topology problem of structure. This
problem has been regarded as posing the greatest difficulty to successful optimal design. The
formulation guarantees at least a local minimum. Potential singularity of the stiffness matrix
is avoided by embedding the behavioral equations as equality constraints in the optimization
problem. Arbitrary objective functions, stress and displacement constraints, and upper and
lower bounds on and linking of the design variables can be easily handled. The formulation is
demonstrated on a number of examples of topology optimization of plate structures loaded in
plane, and shown to be robust under a variety of constraints.

In this study, the formulation was tested under a single loading condition. However it
would be desirable to apply the formulation to multiple loading conditions. Thus, we will test
the formulation under multiple loading conditions in the not-too-distance future.
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