• 제목/요약/키워드: Equal power allocation

검색결과 38건 처리시간 0.02초

Resource Allocation with Proportional Rate In Cognitive Wireless Network: An Immune Clonal Optimization Scheme

  • Chai, Zheng-Yi;Zhang, De-Xian;Zhu, Si-Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권5호
    • /
    • pp.1286-1302
    • /
    • 2012
  • In this paper, the resource allocation problem with proportional fairness rate in cognitive OFDM-based wireless network is studied. It aims to maximize the total system throughput subject to constraints that include total transmit power for secondary users, maximum tolerable interferences of primary users, bit error rate, and proportional fairness rate among secondary users. It is a nonlinear optimization problem, for which obtaining the optimal solution is known to be NP-hard. An efficient bio-inspired suboptimal algorithm called immune clonal optimization is proposed to solve the resource allocation problem in two steps. That is, subcarriers are firstly allocated to secondary users assuming equal power assignment and then the power allocation is performed with an improved immune clonal algorithm. Suitable immune operators such as matrix encoding and adaptive mutation are designed for resource allocation problem. Simulation results show that the proposed algorithm achieves near-optimal throughput and more satisfying proportional fairness rate among secondary users with lower computational complexity.

Joint wireless and computational resource allocation for ultra-dense mobile-edge computing networks

  • Liu, Junyi;Huang, Hongbing;Zhong, Yijun;He, Jiale;Huang, Tiancong;Xiao, Qian;Jiang, Weiheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권7호
    • /
    • pp.3134-3155
    • /
    • 2020
  • In this paper, we study the joint radio and computational resource allocation in the ultra-dense mobile-edge computing networks. In which, the scenario which including both computation offloading and communication service is discussed. That is, some mobile users ask for computation offloading, while the others ask for communication with the minimum communication rate requirements. We formulate the problem as a joint channel assignment, power control and computational resource allocation to minimize the offloading cost of computing offloading, with the precondition that the transmission rate of communication nodes are satisfied. Since the formulated problem is a mixed-integer nonlinear programming (MINLP), which is NP-hard. By leveraging the particular mathematical structure of the problem, i.e., the computational resource allocation variable is independent with other variables in the objective function and constraints, and then the original problem is decomposed into a computational resource allocation subproblem and a joint channel assignment and power allocation subproblem. Since the former is a convex programming, the KKT (Karush-Kuhn-Tucker) conditions can be used to find the closed optimal solution. For the latter, which is still NP-hard, is further decomposed into two subproblems, i.e., the power allocation and the channel assignment, to optimize alternatively. Finally, two heuristic algorithms are proposed, i.e., the Co-channel Equal Power allocation algorithm (CEP) and the Enhanced CEP (ECEP) algorithm to obtain the suboptimal solutions. Numerical results are presented at last to verify the performance of the proposed algorithms.

Outage Probability of Two-Hop Relay Networks with Related Interference

  • Pan, Peisheng;Zheng, Baoyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권8호
    • /
    • pp.1786-1804
    • /
    • 2013
  • We consider a specific interference-limited wireless relay system that comprises several cooperation units (CUs) which are defined as a source and destination node pair with an associated relay node. In the wireless relay system, all source nodes simultaneously transmit their own signals and the relay node in each CU then forwards the received signal to the destination node, causing co-channel interference at both the relay node and the destination node in each CU. The co-channel interference at the relay node is closely related to that at the destination node in each CU. We first derive the end-to-end outage probability in a CU over Rayleigh slow-fading channels with interference for the decode-and-forward (DF) relaying strategy. Then, on the assumption that each CU is allocated with equal power we design an optimal power allocation between the source node and the relay node in each CU to minimize the outage probability of the investigated CU. At last, in the case that each CU is not allocated with equal power and the sum of their power is constrained, we present an optimal power allocation between CUs to minimize the sum of the outage probability of all CUs. The analytical results are verified by simulations.

Power Randomization Schemes for Random Beamforming Based MIMO Systems

  • Jung, Bang-Chul;Sung, Kil-Young
    • Journal of information and communication convergence engineering
    • /
    • 제8권6호
    • /
    • pp.651-654
    • /
    • 2010
  • In this paper, we propose two power randomization schemes for the random beamforming (RBF) based MIMO systems in cellular downlink. In the proposed system, a BS randomizes not only the pre-coding matrix but also the power allocation matrix, while the conventional RBF system allocates an equal power to each transmit stream. The proposed water-filling based power randomization scheme (Scheme-I) is proper in the low SNR values and the proposed random-power based randomization scheme (Scheme-II) is proper in the high SNR values. The proposed system with the power randomization outperforms the conventional RBF system which allocates the same power for each data stream.

발전사업자의 차단기 교체비용 분담에 대한 이론적 분석: 순차적 균등기여규칙의 활용 (A Theoretical Analysis on the Sharing of Circuit Breaker Replacement Costs by Power Providers: An Application of Sequential Equal Contributions Rule)

  • 김광호
    • 자원ㆍ환경경제연구
    • /
    • 제31권4호
    • /
    • pp.571-595
    • /
    • 2022
  • 본 연구는 신규 발전기 진입에 따라 기존사업자들이 차단기를 교체해야 하는 경우 발생하는 교체비용 분담을 이론적으로 분석한다. 협조게임이론의 비용배분 문제에 널리 쓰이는 순차적 균등기여규칙을 비용배분 규칙으로 채택하고 몇 가지 기준에 따라 다양한 비용배분 안을 도출한 후 각 대안이 바람직한 여러 공리들을 얼마나 충족시키는지 조사한다. 분석에 따르면 (i) 신규사업자의 비용, 잔존가치, 망운영자를 제외하는 안과 (ii) 신규사업자의 비용과 잔존가치는 제외하고 망운영자는 포함하는 안이 다른 안들에 비해 상대적으로 우수한 것으로 나타난다. 또한 현실적 요인을 고려하여 현실성이 높은 배분안을 찾고 그 공리적 특성을 분석한다.

Optimized Relay Selection and Power Allocation by an Exclusive Method in Multi-Relay AF Cooperative Networks

  • Bao, Jianrong;Jiang, Bin;Liu, Chao;Jiang, Xianyang;Sun, Minhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권7호
    • /
    • pp.3524-3542
    • /
    • 2017
  • In a single-source and multi-relay amplify-forward (AF) cooperative network, the outage probability and the power allocation are two key factors to influence the performance of an entire system. In this paper, an optimized AF relay selection by an exclusive method and near optimal power allocation (NOPA) is proposed for both good outage probability and power efficiency. Given the same power at the source and the relay nodes, a threshold for selecting the relay nodes is deduced and employed to minimize the average outage probability. It mainly excludes the relay nodes with much higher thresholds over the aforementioned threshold and thus the remainders of the relay nodes participate in cooperative forwarding efficiently. So the proposed scheme can improve the utility of the resources in the cooperative multi-relay system, as well as reduce the computational complexity. In addition, based on the proposed scheme, a NOPA is also suggested to approach sub-optimal power efficiency with low complexity. Simulation results show that the proposed scheme obtains about 2.1dB and 5.8dB performance gain at outage probability of $10^{-4}$, when compared with the all-relay-forward (6 participated relays) and the single-relay-forward schemes. Furthermore, it obtains the minimum outage probability among all selective relay schemes with the same number of the relays. Meanwhile, it approaches closely to the optimal exhaustive scheme, thus reduce much complexity. Moreover, the proposed NOPA scheme achieves better outage probability than those of the equal power allocation schemes. Therefore, the proposed scheme can obtain good outage probability, low computational complexity and high power efficiency, which makes it pragmatic efficiently in the single-source and multi-relay AF based cooperative networks.

Accurate Transmission Loss Allocation Algorithm Based on the Virtual Transaction Strategy: Comparison of Path-integral with Discrete Integral Methods

  • Min, Kyung-Il;Moon, Young-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권4호
    • /
    • pp.511-521
    • /
    • 2010
  • This paper presents a new algorithm to determine accurate bus-wise transmission loss allocation utilizing path-integrals dictated by the transaction strategy. For any transaction strategy, the total sum of the allocated transmission losses of all buses is equal to the actual loss given by the AC power-flow calculation considering the distributed slack. In this paper, the bus-wise allocation of the transmission loss is calculated by integrating the differential loss along a path determined by the transaction strategy. The proposed algorithm is also compared with Galiana's method, which is the well-known transmission loss allocation algorithm based on integration. The performance of the proposed algorithm is evaluated by case studies carried out on the WSCC 9-bus, IEEE 14-bus, New England 39-bus, and IEEE 118-bus systems. The simulation results show that the proposed algorithm is fast and accurate with a large step size.

셀프리 다중안테나 네트워크에서 하위 성능 사용자를 위한 전력 재할당 기법 (Power Re-Allocation for Low-Performance User in Cell-free MIMO Network)

  • 류종열;반태원;이웅섭
    • 한국정보통신학회논문지
    • /
    • 제26권9호
    • /
    • pp.1367-1373
    • /
    • 2022
  • 본 논문에서는 셀프리 다중안테나 네트워크에서 하위 성능 사용자의 주파수 효율을 증대시키기 위한 전력 재할당 기법을 고려한다. AP(Access Point)는 사용자의 대규모 페이딩(large-scale fading) 채널 정보를 이용해 채널 세기에 비례하여 전력을 할당하여 전체 네트워크의 전력효율을 극대화한다. 다음으로 AP는 하위 성능 사용자의 주파수 효율을 증가시키기 위해 할당전력 중 임계비율 이상의 전력을 할당받은 사용자의 전력을 임계비율과 같아지도록 줄이고, 회수한 전력을 채널이 가장 나쁜 사용자에게 추가로 할당한다. 시뮬레이션을 통해 전력 재할당 기법을 통해 증가시킬 수 있는 하위 성능 사용자의 주파수 효율을 정량적으로 검증한다.

비직교 다중접속 사용자의 데이터 전송률 공정성 개선을 위한 전력 할당 기법 (Power Allocation to Improve Data-Rate Fairness of Non-orthogonal Multiple Access Users)

  • 이인호
    • 한국정보통신학회논문지
    • /
    • 제23권9호
    • /
    • pp.1117-1122
    • /
    • 2019
  • 본 논문에서는 하나의 기지국과 두 사용자를 갖는 하향링크 비직교 다중접속 시스템에서 사용자 데이터 전송률의 공정성을 개선하기 위한 전력 할당 기법을 제안한다. 특히, 독립적인 레일레이 채널을 가정하여 평균 사용자 데이터 전송률의 공정성을 극대화하는 전력 할당 기법을 제안한다. 여기서, 공정성의 극대화는 사용자의 평균 데이터 전송률이 동일할 때 얻어진다. 따라서 공정성 평가를 위하여 평균 사용자 데이터 전송률과 총 평균 데이터 전송률의 근사식을 제시한다. 시뮬레이션 결과 분석을 통하여 유도한 평균 데이터 전송률의 근사식을 검증하고, 기존의 전력 할당기법들과 평균 사용자 데이터 전송률 결과를 비교하여 제안하는 기법이 공정성 측면에서 우수함을 보인다.

Optimum Superimposed Training for Mobile OFDM Systems

  • Yang, Qinghai;Kwak, Kyung-Sup
    • Journal of Communications and Networks
    • /
    • 제11권1호
    • /
    • pp.42-46
    • /
    • 2009
  • Superimposed training (SIT) design for estimating of time-varying multipath channels is investigated for mobile orthogonal frequency division multiplexing (OFDM) systems. The design of optimum SIT consists of two parts: The optimal SIT sequence is derived by minimizing the channel estimates' mean square error (MSE); the optimal power allocation between training and information data is developed by maximizing the averaged signal to interference plus noise ratio (SINR) under the condition of equal powered paths. The theoretical analysis is verified by simulations. For the metric of the averaged SINR against signal to noise ratio (SNR), the theoretical result matches the simulation result perfectly. In contrast to an interpolated frequency-multiplexing training (FMT) scheme or an SIT scheme with random pilot sequence, the SIT scheme with proposed optimal sequence achieves higher SINR. The analytical solution of the optimal power allocation is demonstrated by the simulation as well.